Центр масс и уравнение его движения. Третий закон Ньютона. Центр масс. Уравнение движения центра масс. Законы динамики в неинерциальных системах отсчета

Центром масс системы называется точка с радиус-вектором

Для непрерывного распределения массы с плотностью 
. Если силы тяжести, приложенные к каждой частице системы, направлены в одну сторону , то центр масс совпадает с центром тяжести. Но если
не параллельны , то центр масс и центр тяжести не совпадают.

Взяв производную по времени от , получим:

т.е. полный импульс системы равен произведению ее массы на скорость центра масс.

Подставляя это выражение в закон изменения полного импульса, находим:

Центр масс системы движется как частица, в которой сосредоточена вся масса системы и к которой приложена результирующая внешних сил.

При поступательном движении все точки твердого тела движутся так же, как и центр масс (по таким же траекториям), поэтому для описания поступательного движения достаточно записать и решить уравнение движения центра масс.

Так как
, то центр массзамкнутой системы должен сохранять состояние покоя или равномерного прямолинейного движения, т.е. =const. Но при этом вся система может вращаться, разлетаться, взрываться и т.п. в результате действия внутренних сил .

  1. Реактивное движение. Уравнение Мещерского

Реактивным называется движение тела, при котором происходит присоединение или отбрасывание массы. В процессе движения происходит изменение массы тела: за время dt тело массы m присоединяет (поглощает) или отбрасывает (испускает) массу dm со скоростью относительно тела ; в первом случае dm>0, во втором dm<0.

Рассмотрим такое движение на примере ракеты. Перейдем в инерциальную систему отсчета K", которая в данный момент времени t движется с той же скоростью , что и ракета – такая ИСО называетсясопутствующей – в этой системе отсчета ракета в данный момент t покоится (скорость ракеты в этой системе =0). Если сумма внешних сил, действующих на ракету, не равна нулю, то уравнение движения ракеты в системе K", но так как все ИСО эквивалентны, то и в системе К уравнение будет иметь тот же самый вид:

Это – уравнение Мещерского , описывающее движение любого тела с переменной массой}.

В уравнении масса m – величина переменная, и ее нельзя внести под знак производной. Второе слагаемое в правой части уравнения называется реактивной силой

Для ракеты реактивная сила играет роль силы тяги, но в случае присоединения массы dm/dt>0 и реактивная сила будет силой торможения (например, при движении ракеты в облаке космической пыли).

  1. Энергия системы частиц

Энергия системы частиц состоит из кинетической и потенциальной. Кинетическая энергия системы представляет собой сумму кинетических энергий всех частиц системы

и является, согласно определению, величиной аддитивной (как и импульс).

Иначе обстоит дело с потенциальной энергией системы. Во-первых, между частицами системы действуют силы взаимодействия
. ПоэтомуA ij =-dU ij , где U ij - потенциальная энергия взаимодействия i-ой и j-ой частиц. Суммируя U ij по всем частицам системы, находим так называемую собственную потенциальную энергию системы:

Существенно, что собственная потенциальная энергия системы зависит только от ее конфигурации. К тому же эта величина - не аддитивная.

Во-вторых, на каждую частицу системы, вообще говоря, действуют и внешние силы. Если эти силы - консервативные, то их работа будет равна убыли внешней потенциальной энергии A=-dU внеш, где

где U i - потенциальная энергия i-ой частицы во внешнем поле. Она зависит от положений всех частиц во внешнем поле и является аддитивной.

Таким образом, полная механическая энергия системы частиц, находящейся во внешнем потенциальном поле, определяется как

E сист =К сист +U соб +U внеш

1. Уравнение движения центра масс

Особенностью плоского движения является то, что ось вращения сохраняет свою ориентацию в пространстве и остается перпендикулярной плоскости, в которой движется центр масс. Еще раз подчеркнем, что уравнение моментов (3.20) записано относительно, в общем случае, ускоренно движущегося центра масс, однако, как было отмечено в начале лекции, оно имеет такой же вид, как и уравнение моментов относительно неподвижной точки.

В качестве примера рассмотрим задачу о скатывании цилиндра с наклонное плоскости. Приведем два способа решения этой задачи с использованием уравнений динамики твердого тела.

Первый способ. Рассматривается вращение цилиндра относительно оси, проходящее через центр масс (рис. 3.11).

Система уравнений (3.19 - 3.20) имеет вид:

К этой системе необходимо добавить уравнение кинематической связи

(3.23)

Последнее уравнение получается из условия, что цилиндр скатывается без проскальзывания, то есть скорость точки М цилиндра равна нулю.

Уравнение движения центра масс (3.1) запишем для проекций ускорения и сил на ось x вдоль наклонной плоскости, а уравнение моментов (3.22) - для проекций углового ускорения и момента силы трения на ось y , совпадающую с осью цилиндра. Направления осей x и у выбраны согласованно, в том смысле, что положительному линейному ускорению оси цилиндра соответствует положительное же угловое ускорение вращения вокруг этой оси. В итоге получим:

(3.27)

Следует подчеркнуть, что - сила трения сцепления - может принимать любое значение в интервале от О до (сила трения скольжения) в зависимости от параметров задачи. Работу эта сила не совершает, но обеспечивает ускоренное вращение цилиндра при его скатывании с наклонной плоскости. В данном случае

Качение без проскальзывания определяется условием

Мгновенная ось вращения проходит через точку соприкосновения цилиндра и плоскости (точку М). При таком подходе отпадает необходимость в уравнении движении центра масс и уравнении кинематической связи. Уравнение моментов относительно мгновенной оси имеет вид:

(3.33)
Кинетическая энергия при плоском движении.

Кинетическая энергия твердого тела представляет собой сумму кинетических энергий отдельных частиц:

(3.37)

где - скорость центра масс тела, - скорость i-й частицы относительно системы координат, связанной с центром масс и совершающей поступательное движение вместе с ним. Возводя сумму скоростей в квадрат, получим:

(3.38)

так как (суммарный импульс частиц в системе центра масс равен нулю).

Таким образом, кинетическая энергия при плоском движении равна сумме кинетических энергий поступательного и вращательного движений (теорема Кенига). Если рассматривать плоское движение как вращение вокруг мгновенной оси, то кинетическая энергия тела есть энергия вращательного движения.

В этой связи задачу о скатывании цилиндра с наклонной плоскости можно решить, используя закон сохранения механической энергии (напомним, что сила трения при качении без проскальзывания работу не совершает).

Приращение кинетической энергии цилиндра равно убыли его потенциальное энергии:

Дифференцируя обе части этого уравнения по времени, получим

(3.41)

откуда для линейного ускорения оси цилиндра будем иметь то же выражение, что и при чисто динамическом способе решения (см. (3.27, 3.36)).

Замечание. Если цилиндр катится с проскальзыванием, то изменение его кинетической энергии будет определяться также и работой сил трения. Последняя, в отличие от случая, когда тело скользит по шероховатой поверхности, не вращаясь, определяется, в соответствии с (3.14), полным углом поворота цилиндра, а не расстоянием, на которое переместилась его ось.


Заключение

Динамика твердого тела на данном этапе используется для тел, движущихся в сплошной среде.

В задаче о полете тела с тремя несущими поверхностями при наличии динамической асимметрии определены условия, при которых проявляются синхронизмы 1:3. С увеличением угловой скорости вращения тела около продольной оси даже на поверхности рассеивания заметно ослабление этого эффекта.

Разработана программа имитационного моделирования комплекса задач по динамике полета противоградовых ракет. С ее помощью построены таблицы введения поправок на установочные углы запуска ракет для наилучшей компенсации вредного влияния ветра.

Создана механико-математическая модель полета бумеранга. Открыта лаборатория навигации и управления.

Разработан и внедрен на аэродинамической трубе А-8 комплекс механического оборудования и сопутствующей измерительной аппаратуры для проведения динамических испытаний моделей. Определены коэффициенты демпфирования поперечных колебаний осесимметричных оперенных тел различного удлинения при раскрутке вокруг собственной оси в до- и сверхзвуковом потоках.

На основе численного решения задачи о плоских движениях аэродинамического маятника (с несущей поверхностью в виде прямоугольной пластины) в несжимаемой жидкости с учетом динамики вихрей определены области существования всех типов движения маятника, включая режимы автоколебаний и авторотации. Открыта лаборатория сверхзвуковой аэродинамики.

Также в институте компьютерных исследований проводят значимые исследования по динамике твердого тела.

Это направление исследований института связано с анализом движения твердого тела с широким применением компьютерных методов.

Компьютерные исследования в динамике твердого тела относятся к отдельной области науки - компьютерной динамике, которая устанавливает общие закономерности движения систем при помощи различных численных методов и алгоритмов.

В сочетании с аналитическими методами, достижениями топологии, анализа, теории устойчивости и других методов компьютерная динамика применяется, главным образом, в исследовании интегрируемых задач, в частности, динамических проблем теории волчков. Такой подход позволяет получить достаточно полное представление о движении, разобраться во всем его многообразии и наглядно представить себе каждое конкретное движение и его особенности.

Помимо анализа интегрируемых ситуаций в институте начато исследование случаев хаотического поведения в динамике твердого тела. Эти исследования, которые ранее почти не проводились, основаны на широком применении высокоточного компьютерного моделирования. Ожидается, что изучение этой области динамики твердого тела позволит получить в перспективе много новых интересных результатов.

Кроме того, в институте проводятся исследования с использованием методов пуассоновой динамики и геометрии, теории групп и алгебр Ли - методов, которые во многом возникли из задач динамики твердого тела.

ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет общих математических и естественнонаучных дисциплин Кафедра общей физики ЛАБОРАТОРНАЯ РАБОТА №23 Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси выполнил: студент гр. 5СКб-11 Череповец, 2009/10 уч. Год проверил: ассис. Герасимов Р.А. Введение...

е является проблема лазерного охлаждения твердых тел. При комнатной температуре атомы и молекулы, из которых состоит воздух, двигаются в различных направлениях со скоростью около 4000км/час. Такие атомы и молекулы трудно изучать, потому что они слишком быстро исчезают из области наблюдения. Понижая температуру, можно уменьшить скорость, однако проблема состоит в том, что при охлаждении газы обычно...

Допустим, что у нас есть некоторая система, состоящая из n -ного количества материальных точек. Возьмем одну из них и обозначим ее массу как m k . Приложенные к точке внешние силы (как активные силы, так и реакции связей) имеют равнодействующую F k e . Внутренние силы имеют равнодействующую F k l . Наша система находится в движении, следовательно, нужная точка будет иметь ускорение a k . Зная основной закон динамики, мы можем записать следующую формулу:

m k a k = F k e + F k l .

Ее можно применить к любой точке системы. Значит, для всей системы целиком можно сформулировать следующие уравнения:

m 1 a 1 = F 1 e + F 1 l , m 2 a 2 = F 2 e + F 2 l , ⋯ m n a n = F n e + F n l .

Данная формула состоит из дифференциальных уравнений, описывающих движение системы в векторной форме. Если мы спроецируем эти равенства на соответствующие координатные оси, то у нас получатся дифференциальные уравнения движения в проекциях. Но в конкретных задачах чаще всего вычислять движение каждой точки системы не требуется: можно ограничиться характеристиками движения всей системы в целом.

Движение центра масс: основная теорема

Характер движения системы можно определить, зная закон, по которому движется ее центр масс.

Определение 1

Центр инерции системы (центр масс) – это воображаемая точка с радиус-вектором R , выражаемым через радиус-векторы r 1 , r 2 , . . . соответствующих материальных точек по формуле R = m 1 r 1 + m 2 r 2 + . . . + m n r n m .

Здесь сумма показателей в числителе m = m 1 + m 2 + . . . + m 3 выражает общую массу всей системы.

Для нахождения этого закона нам нужно взять уравнения движения системы, приведенные в предыдущем пункте, и сложить их правые и левые части. У нас получится, что:

∑ m k a k ¯ = ∑ F k ¯ e + ∑ F k ¯ l .

Взяв формулу радиус-вектора центра масс, получим следующее:

∑ m k r k = M r c .

Теперь возьмем вторую производную по времени:

∑ m k a k = M a c .

Здесь буквой a c ¯ обозначено ускорение, которое приобретает центр масс системы.

Определение 2

Свойство внутренних сил в системе гласит, что F k l равно нулю, значит, окончательное равенство будет выглядеть так:

M a c ¯ = ∑ F k ¯ e .

Это уравнение является записью закона движения центра масс . Запишем его:

Движение центра масс системы идентично движению материальной точки той же массы, что и вся система целиком, к которой приложены все действующие на систему внешние силы.

Иначе говоря, произведение ускорения центра масс системы на массу самой системы будет равно геометрической сумме всех внешних сил, действующих на эту систему.

Возьмем полученное выше уравнение и спроецируем его правую и левую части на соответствующие координатные оси. У нас получится:

M x c ¨ = ∑ F k x ¯ e , M y c ¨ = ∑ F k y ¯ e , M z c ¨ = ∑ F k z ¯ e .

Эти равенства являются дифференциальными уравнениями движения центра масс в проекции на оси в декартовой системе координат.

Данная теорема имеет большую практическую ценность. Поясним, в чем именно она заключается.

Теорема 1

  1. Любое тело, движущееся поступательно, может быть рассмотрено в качестве материальной точки, масса которой равна массе всего тела. Во всех других случаях такой подход возможен лишь тогда, когда для определения положения тела в пространстве нам будет достаточно знать, в каком положении находится его центр масс. Также важно, чтобы условия задачи допускали исключение вращательной части движения тела.
  2. С помощью теоремы движения центра масс системы мы можем не рассматривать в задачах неизвестные нам заранее внутренние силы.

Разберем пример применения теоремы для решения практической задачи.

Пример 1

Условие: к оси центробежной машины на нити подвешено кольцо из металла. Оно совершает равномерные вращательные движения с угловой скоростью, равной ω . Вычислите, на каком расстоянии центр кольца находится от оси вращения.

Решение

Очевидно, что система находится под воздействием силы тяжести N N ¯ α α . Также необходимо учесть силу натяжения нити и центростремительное ускорение.

Второй закон Ньютона для системы будет выглядеть так:

m a ¯ = N ¯ + m g ¯ .

Теперь создадим проекции обеих частей равенства на оси абсцисс и ординат и получим:

N sin α = m a ; N cos α = m g .

Мы можем разделить одно уравнение на другое:

Поскольку a = υ 2 R , υ = ω R , то нужное нам уравнение будет выглядеть так:

R = g t g α ω 2 .

Ответ: R = g t g α ω 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Когда мы имеем дело с системой частиц, удобно найти такую точку - центр масс, которая характеризовала бы положение и движение этой системы как целого. В системе из двух одинаковых частиц такая точка С, очевидно, лежит посередине между ними (рис. 110а). Это ясно из соображений симметрии: в однородном и изотропном пространстве эта точка выделена среди всех остальных, ибо для любой другой точки А, расположенной ближе к одной из частиц, найдется симметричная ей точка В, расположенная ближе ко второй частице.

Рис. 110. Центр масс двух одинаковых частиц находится в точке С с радиусом-вектором ; центр масс двух частиц с разной массой делит отрезок между ними в отношении, обратно пропорциональном массам чатиц (б)

Очевидно, что радиус-вектор точки С равен полусумме радиусов-векторов одинаковых частиц (рис. 110а): Другими словами, представляет собой обычное среднее значение векторов

Определение центра масс. Как обобщить это определение на случай двух частиц с разными массами Можно ожидать, что наряду с геометрическим центром системы, радиус-вектор которого по-прежнему равен полусумме будет играть определенную роль точка, положение которой определяется распределением

ем масс. Ее естественно определить так, чтобы вклад каждой частицы был пропорционален ее массе:

Определяемый формулой (1) радиус-вектор центра масс представляет собой среднее взвешенное значение радиусов-векторов частиц что очевидно, если переписать (1) в виде

Радиус-вектор каждйй частицы входит в с весом, пропорциональным ее массе. Легко видеть, что определяемый формулой (1) центр масс С лежит на отрезке прямой, соединяющей частицы, и делит его в отношении, обратно пропорциональном массам частиц: (рис. 110б).

Обратим внимание на то, что приведенное здесь определение центра масс связано с известным вам условием равновесия рычага. Представим себе, что точечные массы на которые действует однородное поле тяжести, соединены стержнем пренебрежимо малой массы. Такой рычаг будет в равновесии, если точку его опоры поместить в центр масс С.

Естественным обобщением формулы (1) на случай системы, состоящей из материальных точек с массами и радиусами-векторами является равенство

которое служит определением радиуса-вектора центра масс (или центра инерции) системы.

Скорость центра масс. Центр масс характеризует не только положение, но и движение системы частиц как целого. Скорость центра масс, определяемая равенством как следует из (2), следующим образом выражается через скорости образующих систему частиц:

В числителе правой части этого выражения, как следует из формулы (6) предыдущего параграфа, стоит полный импульс системы Р, а в знаменателе - ее полная масса М. Поэтому импульс системы частиц равен произведению массы всей системы М на скорость ее центра масс

Формула (4) показывает, что импульс системы связан со скоростью ее центра масс точно так же, как импульс отдельной частицы связан со скоростью частицы. Именно в этом смысле движение центра масс и характеризует движение системы как целого.

Закон движения центра масс. Закон изменения импульса системы частиц, выражаемый формулой (9) предыдущего параграфа, по существу представляет собой закон движения ее центра масс. В самом деле, из (4) при неизменной полной массе М системы имеем

что означает, что скорость изменения импульса системы равна произведению ее массы на ускорение центра масс. Сравнивая (5) с формулой (6) § 29, получаем

Согласно (6) центр масс системы движется так, как двигалась бы одна материальная точка массы М под действием силы, равной сумме всех внешних сил, действующих на входящие в систему частицы. В частности, центр масс замкнутой физической системы, на которую внешние силы не действуют, движется в инерциальной системе отсчета равномерно и прямолинейно либо покоится.

Представление о центре масс в ряде случаев позволяет получить ответы на некоторые вопросы еще проще, чем при непосредственном использовании закона сохранения импульса. Рассмотрим следующий пример.

Космонавт вне корабля. Космонавт массы неподвижный относительно космического корабля массы с выключенным двигателем, начинает подтягиваться к кораблю с помощью легкого страховочного фала. Какие расстояния пройдут космонавт и корабль до встречи, если первоначально расстояние между ними равно

Центр масс корабля и космонавта находится на соединяющей их прямой, причем соответствующие расстояния обратно пропорциональны массам Так как то

сразу получаем

В далеком космосе, где внешние силы отсутствуют, центр масс этой замкнутой системы либо покоится, либо движется с постоянной скоростью. В той системе отсчета, где он покоится, космонавт и корабль пройдут до встречи расстояния , даваемые формулами (7).

Для справедливости подобных рассуждений принципиально важно использовать инерциальную систему отсчета. Если бы здесь мы опрометчиво связали систему отсчета с космическим кораблем, то пришли бы к заключению, что при подтягивании космонавта центр масс системы приходит в движение в отсутствие внешних сил: он приближается к кораблю. Центр масс сохраняет свою скорость только относительно инерциальной системы отсчета.

В уравнение (6), определяющее ускорение центра масс системы частиц, не входят действующие в ней внутренние силы. Значит ли это, что внутренние силы вообще никак не влияют на движение центра масс? В отсутствие внешних сил или когда эти силы постоянны, это действительно так. Например, в однородном поле тяжести центр масс разорвавшегося в полете снаряда продолжает движение по той же параболе, пока ни один из осколков еще не упал на землю.

Роль внутренних сил. В тех случаях, когда внешние силы могут изменяться, дело обстоит несколько сложнее. Внешние силы действуют не на центр масс, а на отдельные частицы системы. Эти силы могут зависеть от положения частиц, а положение каждой частицы при ее движении определяется всеми действовавшими на нее силами, как внешними, так и внутренними.

Поясним это на том же простом примере снаряда, разрывающегося в полете на мелкие осколки под действием внутренних сил. Пока все осколки в полете, центр масс, как уже говорилось, продолжает движение по той же параболе. Однако как только хотя бы один из осколков коснется земли и его движение прекратится, добавится новая внешняя сила - сила реакции поверхности земли, действующая на упавший осколок. В результате изменится ускорение центра масс, и он уже не будет двигаться по прежней параболе. Само появление этой силы реакции является следствием действия внутренних сил, разорвавших снаряд. Итак, действие внутренних сил в момент разрыва снаряда может привести к изменению ускорения, с которым будет двигаться центр масс в более поздние моменты времени и, следовательно, к изменению его траектории.

Приведем еще более яркий пример влияния внутренних сил на движение центра масс. Представим себе, что спутник Земли,

обращающийся вокруг нее по круговой орбите, под действием внутренних сил разделяется на две половины. Одна из половин останавливается и начинает отвесно падать на Землю. По закону сохранения импульса вторая половина должна в этот момент вдвое увеличить свою скорость, направленную по касательной к окружности. Как мы увидим ниже, при такой скорости эта половина улетит от Земли на бесконечно большое расстояние. Следовательно, и центр масс спутника, т. е. двух его половин, также удалится на бесконечно большое расстояние от Земли. И причина тому - действие внутренних сил при разделении спутника на две части, так как в противном случае неразделившийся на части спутник продолжал бы движение по круговой орбите.

Реактивное движение. Закон сохранения импульса замкнутой системы позволяет легко объяснить принцип реактивного движения. При сжигании топлива повышается температура и в камере сгорания создается высокое давление, благодаря чему образовавшиеся газы с большой скоростью вырываются из сопла двигателя ракеты. В отсутствие внешних полей полный импульс ракеты и вылетающих из сопла газов остается неизменным. Поэтому при истечении газов ракета приобретает скорость в противоположном направлении.

Уравнение Мещерского. Получим уравнение, описывающее движение ракеты. Пусть в некоторый момент времени ракета в какой-то инерциальной системе отсчета имеет скорость Введем другую инерциальную систему отсчета, в которой в данный момент времени ракета неподвижна. Назовем такую систему отсчета сопутствующей. Если работающий двигатель ракеты за промежуток выбрасывает газы массы со скоростью относительно ракеты, то спустя время скорость ракеты в этой сопутствующей системе будет отлична от нуля и равна

Применим к рассматриваемой замкнутой физической системе ракета плюс газы закон сохранения импульса. В начальный момент в сопутствующей системе отсчета ракета и газы покоятся, поэтому полный импульс равен нулю. Спустя время импульс ракеты равен а импульс выброшенных газов Поэтому

Полная масса системы ракета плюс газы сохраняется, поэтому масса выброшенных газов равна убыли массы ракеты:

Теперь уравнение (8) после деления на промежуток времени переписывается в виде

Переходя к пределу получаем уравнение движения тела переменной массы (ракеты) в отсутствие внешних сил:

Уравнение (9) имеет вид второго закона Ньютона, если его правую часть рассматривать как реактивную силу, т. е. силу, с которой действуют на ракету вылетающие из нее газы. Масса ракеты здесь не постоянна, а убывает со временем из-за потери вещества, т. е. Поэтому реактивная сила; направлена в сторону, противоположную скорости вылетающих из сопла газов относительно ракеты. Видно, что эта сила тем больше, чем больше скорость истечения газов и чем выше расход топлива в единицу времени.

Уравнение (9) получено в определенной инерциальной системе отсчета - сопутствующей системе. Вследствие принципа относительности оно справедливо и в любой другой инерциальной системе отсчета. Если, кроме реактивной силы, на ракету действуют и какие-либо другие внешние силы например сила тяжести и сила сопротивления воздуха, то их следует добавить в правую часть уравнения (9):

Это уравнение впервые было получено Мещерским и носит его имя. При заданном режиме работы двигателя, когда масса представляет собой определенную известную функцию времени, уравнение Мещерского позволяет рассчитать скорость ракеты в любой момент времени.

Какие физические соображения свидетельствуют о целесообразности определения центра масс с помощью формулы (1)?

В каком смысле центр масс характеризует движение системы частиц как целого?

О чем говорит закон движения центра масс системы взаимодействующих тел? Влияют ли внутренние силы на ускорение центра масс?

Могут ли внутренние силы влиять на траекторию центра масс системы?

В задаче о разрыве снаряда, рассмотренной в предыдущем параграфе, закон движения центра масс позволяет сразу найти дальность полета второго осколка, если его начальная скорость горизонтальна. Как это сделать? Почему эти соображения неприменимы в случае, когда его начальная скорость имеет вертикальную составляющую?

В процессе разгона ракеты ее двигатель работает в постоянном режиме, так что относительная скорость истечения газов и расход топлива в единицу времени неизменны. Будет ли при этом ускорение ракеты постоянным?

Выведите уравнение Мещерского, используя вместо сопутствующей системы отсчета инерциальную систему, в которой ракета уже имеет скорость

Формула Циолковского. Допустим, что разгон ракеты происходит в свободном пространстве, где на нее не действуют внешние силы. По мере вырабатывания топлива масса ракеты убывает. Найдем зависимость между массой израсходованного топлива и набранной ракетой скоростью.

После включения двигателя покоившаяся ракета начинает набирать скорость, двигаясь по прямой линии. Спроецировав векторное уравнение (9) на направление движения ракеты, получим

Будем в уравнении (11) рассматривать массу ракеты как функцию набранной ракетой скорости Тогда скорость изменения массы со временем можно представить следующим образом:

МЕХАНИЧЕСКАЯ СИСТЕМА – это произвольный заранее выбранный набор материальных тел, поведение которых анализируется.

В дальнейшем будет использоваться следующее правило: В МАТЕМАТИЧЕСКИХ ВЫКЛАДКАХ ХАРКТЕРИСТИКИ МАТЕРИАЛЬНЫХ ТОЧЕК В ОТЛИЧИЕ ОТ ХАРАКТЕРИСТИК МАТЕРИАЛЬНЫХ ТЕЛ, БУДУТ ИМЕТЬ ИНДЕКС.

МАССА ТЕЛА – это сумма масс всех материальных точек, составляющих данное тело

ВНЕШНИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему и не включенных.

ВНУТРЕННИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему.

ТЕОРЕМА Д1 . Сумма внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, для любой пары материальных точек механической системы сумма сил их взаимодействия всегда равна нулю. Но все взаимодействующие точки принадлежат системе и, следовательно, любой из внутренних сил всегда найдется противодействующая внутренняя сила. Следовательно, полная сумма всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д2 .Сумма моментов внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, каждой внутренней силе найдется противодействующая внутренняя сила. Поскольку линии действия этих сил совпадают, то их плечи относительно любой точки пространства будут одинаковы и, следовательно, их моменты, относительно выбранной точки пространства по величине одинаковы, но знаки имеют разные, так как силы направлены противоположно. Следовательно, полная сумма моментов всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д3 .Произведение массы всей механической системы на ускорение ее центра масс равняется сумме всех внешних сил, действующих на систему.

Доказательство . Рассмотрим произвольную механическую систему, состоящую из конечного числа материальных тел. На основании аксиомы Д2 каждое тело можем разбить на конечное число материальных точек. Пусть всего получено n таких точек. Для каждой такой точки на основании аксиомы Д4 можно составить уравнение движения

Учитывая, что (КИНЕМАТИКА стр. 3), а также разбив все силы, действующие на i -ю точку, на внешние и внутренние, получим из предыдущего равенства

Если просуммировать уравнения движения всех точек системы, получим

Используя коммутативность операций суммирования и дифференцирования (фактически знаки суммирования и дифференцирования можно менять местами), получим

(40)

Выражение, полученное в скобках, может быть представлено через координату центра масс системы (СТАТИКА стр. 15)

где m – масса всей системы;

Радиус-вектор центра масс системы.

Как следует из теоремы Д1, последнее слагаемое в выражении (40) обращается в ноль, поэтому

или , ч.т.д. (41)

Следствие . Центр масс механической системы движется таким образом, как если бы он был материальной точкой, обладающей всей массой системы и к которой приведены все внешние силы .

Движение механической системы в отсутствие внешних сил

Теорема Д4. Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении, то центр масс системы в этом направлении будет двигаться с постоянной скоростью.

Доказательство Х совпадала с направлением, в котором внешние силы уравновешены, т.е. сумма проекций внешних сил на ось Х равна нулю

Тогда, согласно теореме Д3

Так как , следовательно

Если проинтегрировать последнее выражение, то получим

ТЕОРЕМА Д5 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то центр масс системы остается неподвижен все время движения.

Доказательство . Повторив рассуждения, приведенные в доказательстве предыдущей теоремы, получим, что скорость центра масс должна остаться такой же, какой она была в начальный момент, т.е. нулевой

Проинтегрировав это выражение, получим

ТЕОРЕМА Д6 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то сумма произведений масс каждого из тел системы на абсолютное смещение его собственного центра масс в том же направлении равна нулю.

Доказательство . Выберем систему координат таким образом, чтобы ось Х совпадала с направлением, в котором внешние силы уравновешены или отсутствуют (F 1 , F 2 , …, F k на рис. 3), т.е. сумма проекций внешних сил на ось Х равна нулю

Поделиться: