Что такое логарифм? Из истории логарифмов Натуральный и десятичный логарифмы

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ЛОГАРИФМИЧЕСКОЙ И ПОКАЗАТЕЛЬНОЙ ФУНКЦИЙ В РАЗЛИЧНЫХ ОБЛАСТЯХ ЕСТЕСТВОЗНАНИЯ И МАТЕМАТИКИ

В курсе математики средней и старшей школы мы получаем большой объём математических знаний.

Порой многие понятия курса алгебры и математического анализа 10-11 классов носят абстрактный характер, и мы задаёмся вопросом: «А где применяются те знания, которые мы получаем на уроках математики?»

Так возникла идея: исследовать в каких областях науки, техники нашли применение логарифмы, логарифмическая и показательная функции.

Задавшись целью (исследовать в каких областях науки, техники нашли применение логарифмы, логарифмическая и показательная функции) и определив задачи (актуализация практической значимости математических знаний; развитие нравственных представлений о природе математики, сущности и происхождении математических абстракций; понимание значимости математики для научно-технического прогресса.) мы провели большую исследовательскую работу и выяснили, что логарифмы, логарифмическая и показательная функции имеют прикладное значение в следующих областях естествознания: физике, химии, биоло­гии, географии, астрономии, а так же экономике банковского дела и производства.

История возникновения логарифма

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, а извлечение корня степени n сводится к делению логарифма подкоренного выражения на n. Первым эту идею опубликовал в своей книге «Arithmetica integra» Михаэль Штифель, который, впрочем, не

приложил серьёзных усилий для реализации своей идеи.

Ø В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов». В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1". Термин логарифм, предложенный Непером, утвердился в науке. Логарифмом числа x называют показатель степени y, в которую надо возвести некоторое фиксированное число a, чтобы получить исходное число x: a y =x . Записывают: y = log a x.

Ø Уже спустя 5 лет, в 1619 г., лондонский учитель математики Джон Спайделл переиздал таблицы Непера, преобразованные так, что они фактически стали таблицами натуральных логарифмов (хотя масштабирование до целых чисел Спайделл сохранил). Термин «натуральный логарифм» предложил итальянский математик Пьетро Менголи в середине XVI века.

Ø И только в ХХ веке Владимир Модестович Брадис придумал способ, позволяющий до минимума сократить утомительные расчеты. Выбрать наиболее необходимые для инженерных расчетов функции, один раз посчитать их значения с приемлемой точностью в широком интервале аргументов. А результаты расчетов представить в виде таблиц. Кропотливых расчетов В.М. Брадису предстояло проделать много. Но они экономили массу времени всем последующим пользователям его таблиц.

Эти таблицы стали советским бестселлером. С 1930 года их издавали едва ли не ежегодно в течение тридцати лет. Эту книжку читали миллионы. Школьники, студенты, инженеры – таблицы Брадиса были у всех.

Логарифмы

История логарифмов

Название введено Непером, происходит от греческих слов logoz и ariumoz - оно означает буквально “числа отношений”. Логарифмы были изобретены Непером. Непер изобрел логарифмы не позднее 1594 года. Логарифмы с основанием a ввел учитель математики Спейдел. Слово основание заимствовано из теории о степенях и перенесено в теорию логарифмов Эйлером. Глагол “логарифмировать” появился в 19 веке у Коппе. Коши первый предложил ввести различные знаки для десятичных и натуральных логарифмов. Обозначения, близкие к современным ввел немецкий математик Прингсхейм в 1893 году. Именно он обозначал логарифм натурального числа через ln . Определение логарифма как показателя степени данного основания можно найти у Валлиса (1665 год), Бернулли (1694 год).

Определение логарифма

Логарифмом числа b>0 по основанию a>0, a ≠ 1 , называется показатель степени, в которую надо возвести число a, чтобы получить число b.

Логарифм числа b по основанию a обозначается: log a b

Основное логарифмическое тождество

Это равенство является просто другой формой определения логарифма. Его часто называют основным логарифмическим тождеством.

Пример

1. 3=log 2 8, так как 2³=8

2. ½=log 3 √3 , так как 3= √3

3. 3 log 3 1/5 =1/5

4. 2=log √5 5, так как (√5)²=5

Натуральный и десятичный логарифмы

Натуральным называется логарифм, основание которого равно e. Обозначается ln b, т.е.

Десятичным называется логарифм, основание которого равно 10. Обозначается lg b, т.е.

Основные свойства логарифмов

Пусть: a > 0, a ≠ 1. Тогда:

1. log a x*y=logax+logay (x>0, y>0)

2. log a y/x=logax−logay (x>0, y>0)

3. log a x p =p*logax (x>0)

4. log a p x=1/p*logax (x>0)

Пример

1) log 8 16+log 8 4= log 8 (16 4)= log 8 64= 2;

2) log 5 375– log 5 3= log 5 375/3=log 5 125= 3;

3) ½log 3 36+ log 3 2- log 3 √6- ½ log 3 8=log 3 √36+ log 3 2-(log 3 √6+log 3 √8) =log 3 12/4 √3=log 3 √3= ½.

Формы перехода от логарифма по одному основанию к логарифмы по другому основанию

1. log a b=log c b/log c a

2. log a b=1/log b a

Логарифмические уравнения

1) Уравнение содержащие переменную под знаком логарифма (log) называются логарифмическими. Простейшим примером логарифмического уравнения служит уравнение вида: log a x=b, где а>0 и а=1.

2) Решение логарифмического уравнения вида: log a f(x)=log a g(x) (1) основано на том, что оно равносильно уравнению вида f(x) = g(x) (2) при дополнительных условиях f(x)>0 и g(x)>0.

3) При переходе от уравнения (1) к уравнению (2) возможно появление посторонних корней поэтому для них выявления требуется проверка.

4) При решении логарифмических уравнений часто используется метод подстановки.

Вывод

Логарифм число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление - вычитанием, возведение в степень - умножением и извлечение корней - делением.

Единственным способом реализации дальних путешествий было мореплавание, что всегда связано с выполнением больших объемов навигационных вычислений. Сейчас трудно представить процесс изнурительных расчетов при умножении-делении пяти-шестизначных чисел «вручную». богослов по роду своей основной деятельности, занимаясь на досуге тригонометрическими расчетами, догадался заменить трудоемкую процедуру умножения простым сложением. Он сам говорил, что его целью было «освободиться от трудности и скуки вычислений, которые отпугивают многих от изучения математики». Усилия увенчались успехом - был создан математический аппарат, названный системой логарифмов.

Итак, что такое логарифм? Основой логарифмических вычислений является иное представление числа: вместо обычной позиционной системы, как мы привыкли, число A представляется в виде степенного выражения, где некое произвольное число N, называемое основанием степени, возводится в такую степень n, что в результате получается число A. Таким образом, n - это логарифм числа А по основанию N. Выбор основания логарифмов определяет название системы. Для простых вичислений применяется десятичная система логарифмов, а в науке и технике широко используется система натуральных логарифмов, где основанием служит иррациональное число е=2,718. Выражение, определяющее логарифм числа А, на языке математики записывается так:

n=log(N)A, где N - основание степени.

Десятичный и натуральный логарифмы имеют свое специфичное сокращенное написание - lgA и lnA, соответственно.

В системе расчетов, использующей вычисление логарифмов, основным элементом является преобразование числа к степенному виду с помощью таблицы логарифмов по некоторому основанию, например 10. Эта манипуляция не представляет никаких сложностей. Далее используется свойство степенных чисел, состоящее в том, что при умножении их степени складываются. Практически это означает, что умножение чисел с логарифмическим представлением, заменяется сложением их степеней. Поэтому, вопрос «что такое логарифм», если его продолжить до «а зачем он нам нужен», имеет простой ответ - чтоб упростить процедуру умножения-деления многоразрядных чисел - ведь сложение «в столбик» значительно проще умножения «в столбик». Кто не верит - пусть попробует сложить и умножить два восьмиразрядных числа.

Первые таблицы логарифмов (по основанию с опубликовал в 1614 году Джон Непер, а полностью лишенный ошибок вариант, включающий и таблицы десятичных логарифмов, появился в 1857 году и известен как таблицы Бремикера. Использование логарифмов с основанием в виде обусловлено тем, что число е довольно просто получить через ряд Тейлора, имеющий широкое применение в интегральном и

Суть данной вычислительной системы содержится в ответе на вопрос «что такое логарифм» и вытекает из основного логарифмического тождества: N(основание логарифма) n, равную логарифму числа А(logA), равно этому числу A. При этом А>0, т.е. логарифм определяется только для положительных чисел, а основание логарифма всегда больше 0 и не равно 1. Исходя из сказанного, свойства натурального логарифма можно сформулировать следующим образом:

  1. Область определения натурального логарифма - вся числовая ось от 0 до бесконечности.
  2. ln x = 0 - следствие известного соотношения - любое число в нулевой степени равно 1.
  3. ln (X*Y) = ln X + lnY - наиболее важное для вычислительных манипуляций свойство - логарифм произведения двух чисел рамен сумме логарифмов каждого из них.
  4. ln (X/Y) = ln X - lnY - логарифм частного двух чисел равен разности логарифмов этих чисел.
  5. ln (X)n =n*ln X .
  6. Натуральный логарифм представляет собой дифференцируемую, выпуклую вверх функцию, причем ln’ X = 1 / X
  7. log (N)A =K* ln A - логарифм по любому положительному и отличному от числа е основанию отличается от натурального только коэффициентом.

Сейчас каждый школьник знает, что такое логарифм, но благодаря прогрессу в области прикладной вычислительной техники проблемы вычислительных работ ушли в прошлое. Тем не менее, логарифмы, уже как математический инструмент, используются при решении уравнений с неизвестными в показателе степени, в выражениях для нахождения времени

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Поделиться: