Метод крамера примеры с решением 3 порядка. Практическая работа «Решение систем линейных уравнений третьего порядка методом Крамера. Решение систем линейных уравнений методом Гаусса

Системой линейных уравнений называется совокупность рассматриваемых совместно нескольких линейных уравнений.

В системе может быть любое число уравнений с любым числом неизвестных.

Решением системы уравнений называется совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, то есть обращающая их в тождества.

Система, имеющая решение, называется совместной, в противном случае – несовместной.

Для решения системы применяют различные методы.

Пусть
(число уравнений равно числу неизвестных).

Метод Крамера

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными:

(7)

Для нахождения неизвестных
применим формулу Крамера:

(8)

где - определитель системы, элементы которого есть коэффициенты при неизвестных:

.

получается путём замены первого столбца определителя столбцом свободных членов:

.

Аналогично:

;
.

Пример 1. Решить систему по формуле Крамера:

.

Решение: Воспользуемся формулами (8):

;

;

;

;

Ответ:
.

Для любой системы линейных уравнений снеизвестными можно утверждать:


Матричный способ решения

Рассмотрим решение системы (7) трёх линейных уравнений с тремя неизвестными матричным способом.

Используя правила умножения матриц, данную систему уравнений можно записать в виде:
, где

.

Пусть матрица невырожденная, т.е.
. Умножая обе части матричного уравнения слева на матрицу
, обратную матрице, получим:
.

Учитывая, что
, имеем

(9)

Пример 2. Решить систему матричным способом:

.

Решение: Введём матрицы:

- из коэффициентов при неизвестных;

- столбец свободных членов.

Тогда систему можно записать матричным уравнением:
.

Воспользуемся формулой (9). Найдём обратную матрицу
по формуле (6):

;

.

Следовательно,

Получили:

.

Ответ:
.

Метод последовательного исключения неизвестных (метод Гаусса)

Основная идея применяемого метода заключается в последовательном исключении неизвестных. Поясним смысл этого метода на системе трёх уравнений с тремя неизвестными:

.

Допустим, что
(если
, то изменим порядок уравнений, выбрав первым уравнением то, в котором коэффициент прине равен нулю).

Первый шаг: а) делим уравнение
на
; б) умножаем полученное уравнение на
и вычитаем из
; в) затем полученное умножаем на
и вычитаем из
. В результате первого шага будем иметь систему:


,


Второй шаг: поступаем с уравнением
и
точно так же, как с уравнениями
.

В итоге исходная система преобразуется к так называемому ступенчатому виду:

Из преобразованной системы все неизвестные определяются последовательно без труда.

Замечание. Практически удобнее приводить к ступенчатому виду не саму систему уравнений, а матрицу из коэффициентов, при неизвестных, и свободных членов.

Пример 3. Решить методом Гаусса систему:

.

Переход от одной матрицы к другой будем записывать при помощи знака эквивалентности ~.

~
~
~
~

~
.

По полученной матрице выписываем преобразованную систему:

.

Ответ:
.

Замечание: Если система имеет единственное решение, то ступенчатая система приводится к треугольной, то есть к такой, в которой последнее уравнение будет содержать одно неизвестное. В случае неопределённой системы, то есть такой, в которой число неизвестных больше числа линейно независимых уравнений, треугольной системы не будет, так как последнее уравнение будет содержать более одного неизвестного (система имеет бесчисленное множество решений). Когда же система несовместна, то, после приведения её к ступенчатому виду, она будет содержать хотя бы одно значение вида
, то есть уравнение, в котором все неизвестные имеют нулевые коэффициенты, а правая часть отлична от нуля (система решений не имеет). Метод Гаусса применим к произвольной системе линейных уравнений (при любых
и).

      Теорема существования решения системы линейных уравнений

При решении системы линейных уравнений методом гаусса ответ на вопрос, совместна или несовместна данная система может быть дан лишь в конце вычислений. Однако часто бывает важно решить вопрос о совместности или несовместности системы уравнений, не находя самих решений. Ответ на этот вопрос даёт следующая теорема Кронекера-Капелли.

Пусть дана система
линейных уравнений снеизвестными:

(10)

Для того, чтобы система (10) была совместной, необходимо и достаточно чтобы ранг матрицы системы

.

был равен рангу её расширенной матрицы

.

Причём, если
, то система (10) имеет единственное решение; если же
, то система имеет бесчисленное множество решений.

Рассмотрим однородную систему (все свободные члены равны нулю) линейных уравнений:

.

Эта система всегда совместна, так как она имеет нулевое решение .

В следующей теореме даны условия, при которых система имеет также решения, отличные от нулевого.

Терема. Для того, чтобы однородная система линейчатых уравнений имела нулевое решение, необходимо и достаточно, чтобы её определитель был равен нулю:

.

Таким образом, если
, то решение- единственное. Если
, то существует бесконечноё множество других ненулевых решений. Укажем один из способов отыскания решений для однородной системы трёх линейных уравнений с тремя неизвестными в случае
.

Можно доказать, что если
, а первое и второе уравнения непропорциональны (линейно независимы), то третье уравнение есть следствие первых двух. Решение однородной системы трёх уравнений с тремя неизвестными сводится к решению двух уравнений с тремя неизвестными. Появляется так называемое свободное неизвестное, которому можно придавать произвольные значения.

Пример 4. Найти все решения системы:

.

Решение. Определитель этой системы

.

Поэтому система имеет нулевые решения. Можно заметить, что первые два уравнения, например, непропорциональны, следовательно, они линейно независимые. Третье является следствием первых двух (получается, если к первому уравнению прибавить удвоенное второе). Отбросив его, получим систему двух уравнений с тремя неизвестными:

.

Полагая, например,
, получим

.

Решая систему двух линейных уравнений, выразим ичерез:
. Следовательно, решение системы можно записать в виде:
, где- произвольное число.

Пример 5. Найти все решения системы:

.

Решение. Нетрудно видеть, что в данной системе только одно независимое уравнение (два других ему пропорциональны). Система из трёх уравнений с тремя неизвестными свелась к одному уравнению с тремя неизвестными. Появляются два свободных неизвестных. Найдя, например, из первого уравнения
при произвольныхи, получим решения данной системы. Общих вид решения можно записать, гдеи- произвольные числа.

      Вопросы для самопроверки

Сформулируйте правило Крамера для решения системы линейных уравнений снеизвестными.

В чём сущность матричного способа решения систем?

В чём заключается метод Гаусса решения системы линейных уравнений?

Сформулируйте теорему Кронекера-Капелли.

Сформулируйте необходимое и достаточноё условие существования ненулевых решений однородной системы линейных уравнений.

      Примеры для самостоятельного решения

Найдите все решения систем:

1.
; 2.
;

3.
; 4.
;

5.
; 6.
;

7.
; 8.
;

9.
; 10.
;

11.
; 12.
;

13.
; 14.
;

15.
.

Определите, при каких значениях исистема уравнений

а) имеет единственное решение;

б) не имеет решения;

в) имеет бесконечно много решений.

16.
; 17.
;

Найти все решения следующих однородных систем:

18.
; 19.
;

20.
; 21.
;

22.
; 23.
;

      Ответы к примерам

1.
; 2.
; 3. Ǿ; 4. Ǿ;

5.
- произвольное число.

6.
, где- произвольное число.

7.
; 8.
; 9. Ǿ; 10. Ǿ;

11.
, где- произвольное число.

12. , гдеи- произвольные числа.

13.
; 14.
гдеи- произвольные числа.

15. Ǿ; 16. а)
; б)
; в)
.

17. а)
; б)
; в)
;

18.
; 19.
; 20., где- произвольное число.

21. , где- произвольное число.

22. , где- произвольное число.

23. , гдеи- произвольные числа.

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ

Кафедра «Автоматизации управления войсками»

Только для преподавателей

"Утверждаю"

Начальник кафедры № 9

полковник ЯКОВЛЕВ А.Б.

«____»______________ 2004 г.

доцент А.И.СМИРНОВА

"ОПРЕДЕЛИТЕЛИ.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"

ЛЕКЦИЯ № 2 / 1

Обсуждено на заседании кафедры № 9

«____»___________ 2004г.

Протокол № ___________

Кострома, 2004.

Введение

1. Определители второго и третьего порядка.

2. Свойства определителей. Теорема разложения.

3. Теорема Крамера.

Заключение

Литература

1. В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.

2. В.С. Щипачев, Высшая математика, гл.10, п.2.

ВВЕДЕНИЕ

На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.

1-ый учебный вопросОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО

ПОРЯДКА

Рассмотрим таблицу из четырех чисел вида

Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.

ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражение вида :

(1)

Числа а 11, …, а 22 называют э л е м е т а м и определителя.

Диагональ, образованная элементами а 11 ; а 22 называется г л а в н ой, а диагональ, образованная элементами а 12 ; а 21 -п о б о ч н ой.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

ПРИМЕРЫ. Вычислить:

Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:

ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида :

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:

" + " " – "

С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют

п р а в и л о м т р е у г о л ь н и к о в.

ПРИМЕРЫ. Вычислить по правилу треугольников:

ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.

2-ой учебный вопросСВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.

.

Раскрывая оба определителя, убеждаемся в справедливости равенства.

Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.

Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину .

.

Свойство 3. Общий множитель элементов строки (или столбца ) можно выносить за знак определителя.

.

Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.

Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.

Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.

D = - DÞ 2 D = 0 ÞD = 0.

Свойство 5. Если все элементы какой–то строки (или столбца ) равны нулю, то определитель равен нулю.

Это свойство можно рассматривать как частный случай свойства 3 при

Свойство 6. Если элементы двух строк (или столбцов ) определителя пропорциональны, то определитель равен нулю.

.

Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.

Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.

.

Доказывается непосредственной проверкой.

Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.

Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.

ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента а i j обозначается М i j . Так для элемента а 11 минор

Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.

ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1) k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.

Алгебраическое дополнение элемента а i j обозначается А i j .

Таким образом, А i j =

.

Выпишем алгебраические дополнения для элементов а 11 и а 12.

. .

Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс , если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус , если эта сумма нечетная .

ПРИМЕР. Найти миноры и алгебраические дополнения для элементов первой строки определителя:

Ясно, что миноры и алгебраические дополнения могут отличаться только знаком.

Рассмотрим без доказательства важную теорему – теорему разложения определителя.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Определитель равен сумме произведений элементов какой-либо строки или столбца на их алгебраические дополнения.

Используя эту теорему, запишем разложение определителя третьего порядка по первой строке.

.

В развернутом виде:

.

Последнюю формулу можно использовать как основную при вычислении определителя третьего порядка.

Теорема разложения позволяет свести вычисление определителя третьего порядка к вычислению трех определителей второго порядка.

Теорема разложения дает второй способ вычисления определителей третьего порядка.

ПРИМЕРЫ. Вычислить определитель, используя теорему разложения.

Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.

Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

Равенство матриц.

A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

Действия над матрицами.

1. Сложение матриц - поэлементная операция

Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B.

Покажем операцию умножения матриц на примере:

6. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

Строки и столбцы поменялись местами

Пример

Свойства опeраций над матрицами

(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

Виды матриц

1. Прямоугольные: m и n - произвольные положительные целые числа

2. Квадратные: m=n

3. Матрица строка: m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

4. Матрица столбец: n=1 . Например

5. Диагональная матрица: m=n и a ij =0 , если i≠j . Например

6. Единичная матрица: m=n и

7. Нулевая матрица: a ij =0, i=1,2,...,m

j=1,2,...,n

8. Треугольная матрица: все элементы ниже главной диагонали равны 0.

9. Квадратная матрица:m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательноA"=A

Например,

Обра́тная ма́трица - такая матрица A −1 , при умножении на которую исходная матрица A даёт в результате единичную матрицу E :

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Примеры решения систем линейных алгебраических уравнений матричным методом.

Рассмотрим матричный метод на примерах. В некоторых примерах мы не будем подробно описывать процесс вычисления определителей матриц.

Пример.

С помощью обратной матрицы найдите решение системы линейных уравнений

.

Решение.

В матричной форме исходная система запишется как, где . Вычислим определитель основной матрицы и убедимся, что он отличен от нуля. В противном случае мы не сможем решить систему матричным методом. Имеем , следовательно, для матрицы А может быть найдена обратная матрица . Таким образом, если мы отыщем обратную матрицу, то искомое решение СЛАУ определим как . Итак, задача свелась к построению обратной матрицы . Найдем ее.

Обратную матрицу можно найти по следующей формуле :

, где – определитель матрицы А, – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Понятие обратной матрицы существует только для квадратных матриц , матриц «два на два», «три на три» и т.д.

Полярные координаты. В полярной системе координат положение точки М

М

ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ В ПРОСТРАНСТВЕ

ПРЯМАЯ

1. Общее уравнение прямой. Всякое уравнение первой степени относительно х и у, т. е. уравнение вида:

(1) Ах+Ву+С=0 наз. общин уравнением прямой ( + ≠0),A,B,C-ПОСТОЯННЫЕ КОЭФИЦИЕНТЫ.






КРИВЫЕ ВТОРОГО ПОРЯДКА

1. Окружность. Окружность-это множество точек плоскости, равноудален-

равноудаленных от данной точки (центра). Если г - радиус окружности, а точка С (а; Ь) - ее центр, то уравнение окружности имеет вид:

Гипербола . Гиперболой называется множество точек плоскости, абсолютная

величина разности расстояний которых до двух данных точек, называемых фо-

кусами, есть величина постоянная (ее обозначают через 2а), причем эта постоянная меньше расстояния между фокусами. Если поместить фокусы гиперболы в точках F1 (с; 0) и F2(- с; 0), то получится каноническое уравнение гиперболы

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

ПЛОСКОСТЬ И ПРЯМАЯ

плоскости,называемый нормальным вектором.

Поверхность второго порядка

Поверхность второго порядка - геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида

в котором по крайней мере один из коэффициентов , , , , , отличен от нуля.

Типы поверхностей второго порядка

Цилиндрические поверхности

Поверхность называется цилиндрической поверхностью с образующей , если для любой точки этой поверхности прямая, проходящая через эту точку параллельно образующей , целиком принадлежит поверхности .

Теорема (об уравнении цилиндрической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность имеет уравнение , то - цилиндрическая поверхность с образующей, параллельной оси .

Кривая, задаваемая уравнением в плоскости , называется направляющей цилиндрической поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность называется цилиндрической поверхностью второго порядка .

Эллиптический цилиндр: Параболический цилиндр: Гиперболический цилиндр:
Пара совпавших прямых: Пара совпавших плоскостей: Пара пересекающихся плоскостей:

Конические поверхности

Коническая поверхность.

Основная статья: Коническая поверхность

Поверхность называется конической поверхностью с вершиной в точке , если для любой точки этой поверхности прямая, проходящая через и , целиком принадлежит этой поверхности.

Функция называется однородной порядка , если выполняется следующее:

Теорема (об уравнении конической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , где - однородная функция, то - коническая поверхность с вершиной в начале координат.

Если поверхность задана функцией , являющейся однородным алгебраическим многочленом второго порядка, то называется конической поверхностью второго порядка .

· Каноническое уравнение конуса второго порядка имеет вид:

Поверхности вращения ]

Поверхность называется поверхностью вращения вокруг оси , если для любой точки этой поверхности окружность, проходящая через эту точку в плоскости с центром в и радиусом , целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , то - поверхность вращения вокруг оси .

Эллипсоид: Однополостной гиперболоид: Двуполостной гиперболоид: Эллиптический параболоид:

В случае, если , перечисленные выше поверхности являются поверхностями вращения.

Эллиптический параболоид

Уравнение эллиптического параболоида имеет вид

Если , то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью является эллипсом.

Пересечение эллиптического параболоида с плоскостью или является параболой.

Гиперболический параболоид ]

Гиперболический параболоид.

Уравнение гиперболического параболоида имеет вид

Пересечение гиперболического параболоида с плоскостью является гиперболой.

Пересечение гиперболического параболоида с плоскостью или является параболой.

Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».

Центральные поверхности

Если центр поверхности второго порядка существует и единственен, то его координаты можно найти, решив систему уравнений:

Таким образом, знак, который при этом приписывается минору соответствующего элемента определителя, пределяется следующей таблицей:

В приведенном выше равенстве, выражающем определитель третьего порядка,

в правой части стоит сумма произведений элементов 1-й строки определителя на их алгебраические дополнения.

Теорема 1. Определитель третьего порядка равен сумме произведений

элементов любой его строки или столбца на их алгебраические дополнения.

Эта теорема позволяет вычислять значение определителя, раскрывая его по

элементам любой его строки или столбца.

Теорема 2. Сумма произведений элементов какой-либо строки (столбца)

определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Свойства определителей.

1°. Определитель не изменится, если строки определителя заменить столб-

цами, а столбцы-соответствующими строками.

2°. Общий множитель элементов какой-нибудь строки (или столбца) может

быть вынесен за знак определителя.

3°. Если элементы одной строки (столбца) определителя соответственно

равны элементам другой строки (столбца), то определитель равен нулю.

4°. При перестановке двух строк (столбцов) определитель меняет знак на

противоположный.

5°. Определитель не изменится, если к элементам одной строки (столбца)

прибавить соответственные элементы другой строки (столбца), умноженные на одно и то же число (теорема о линейной комбинации параллельных рядов определителя).

Решение системы трех линейных уравнений с тремя неизвестными .

находится по формулам Крамера

При этом предполагается, что D ≠0 (если D = 0, то исходная система либо неопределенная, либо несовместная).

Если,система однородная, т. е. имеет вид

и ее определитель отличен от нуля, то она имеет единственное решение х= 0,

Если же определитель однородной системы равен нулю, то система сводится

либо к двум независимым уравнениям (третье является их следствием), либо к

одному уравнению (остальные два являются его следствиями). Первый случай

имеет место тогда, когда среди миноров определителя однородной системы есть

хотя бы один отличный от нуля, второй-тогда, когда все миноры этого опреде лителя равны нулю. В обоих случаях однородная система имеет бесчисленное множество решений.

Вычислить определитель третьего порядка



Практическая работа

«Решение систем линейных уравнений третьего порядка методом Крамера»

Цели работы:

    расширить представление о методах решения СЛУ и отработать алгоритм решения СЛУ методом Крамора;

    развивать логическое мышление студентов, умение находить рациональное решение задачи;

    воспитывать у студентов аккуратность и культуру письменной математической речи при оформлении ими своего решения.

Основной теоретический материал.

Метод Крамера. Применение для систем линейных уравнений.

Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами - числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй - при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение. Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство. Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае - несовместимой. Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственное, систему уравнений называют неопределенной. Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами, например, по формулам Крамера (метод Крамера)

Теорема Крамера. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера: - определители, образованные с заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений.

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Решение.

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.

Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.

Найдем составляющие определителя:

Подставим найденные значения в определитель

Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:

Критерии оценивания:

Работа оценивается на «3»,если: самостоятельно полностью и верно решена одна из систем.

Работа оценивается на «4»,если: самостоятельно полностью и верно решены любые две системы.

Работа оценивается на «5»,если: самостоятельно полностью и верно решены три системы.

Поделиться: