Прямая, заданная пересечением двух плоскостей. Линия пересечения плоскостей онлайн Уравнение прямой образованной пересечением двух плоскостей

В данном разделе продолжим изучение темы уравнения прямой в пространстве с позиции стереометрии. Это значит, что мы будем рассматривать прямую линию в трехмерном пространстве как линию пересечения двух плоскостей.

Согласно аксиомам стереометрии, если две плоскости не совпадают и имеют одну общую точку, то они также имею одну общую прямую, на которой лежат все точки, которые являются общими для двух плоскостей. Используя уравнения двух пересекающихся плоскостей, мы можем определить прямую линию в прямоугольной системе координат.

По ходу рассмотрения темы приведем многочисленные примеры, ряд графических иллюстраций и развернутых решений, необходимых для лучшего усвоения материала.

Пусть даны две плоскости, которые не совпадают между собой и пересекаются. Обозначим их как плоскость α и плоскость β . Разместим их в прямоугольной системе координат O х у z трехмерного пространства.

Как мы помним, любую плоскость в прямоугольной системе координат задает общее уравнение плоскости вида A x + B y + C z + D = 0 . Будем считать, что плоскости α соотвествует уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а плоскости β уравнение A 2 x + B 2 y + C 2 z + D 2 = 0 . В этом случае нормальные вектора плоскостей α и β n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) не коллинеарны, так как плоскости не совпадают между собой и е размещаются параллельно друг другу. Запишем это условие следующим образом:

n 1 → ≠ λ · n 2 → ⇔ A 1 , B 1 , C 1 ≠ λ · A 2 , λ · B 2 , λ · C 2 , λ ∈ R

Чтобы освежить в памяти материал по теме «Параллельность плоскостей», смотрите соответствующий раздел нашего сайта.

Линию пересечения плоскостей обозначим буквой a . Т.е. a = α ∩ β . Эта прямая представляет собой множество точек, которые являются общими для обеих плоскостей α и β . Это значит, что все точки прямой линии a удовлетворяют обоим уравнениям плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . Фактически, они являются частным решением системы уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

Общее решение системы линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 определяет координаты всех точек линии, по которой происходит пересечение двух плоскостей α и β . Это значит, что с его помощью мы можем определить положение прямой в прямоугольной системе координат O x y z .

Рассмотрим описанную теорию еще раз, теперь уже на конкретном примере.

Пример 1

Прямая O x – это прямая, по которой пересекаются координатные плоскости O x y и O x z . Зададим плоскость O x y уравнением z = 0 , а плоскость O x z уравнением у = 0 . Такой подход мы подробно разобрали в разделе «Неполное общее уравнение плоскости», так что, в случае затруднений, можно обратиться к этому материалу повторно. В этом случае координатная прямая O x определяется в трехмерной системе координат системой из двух уравнений вида y = 0 z = 0 .

Нахождение координат точки, лежащей на прямой, по которой пересекаются плоскости

Рассмотрим задачу. Пусть в трехмерном пространстве задана прямоугольная система координат O х у z . Линия, по которой пересекаются две плоскости a , задана системой уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Дана точка трехмерного пространства M 0 x 0 , y 0 , z 0 .

Давайте определим, принадлежит ли точка M 0 x 0 , y 0 , z 0 заданной прямой линии a .

Для того, чтобы получить ответ на вопрос задачи, подставим координаты точки М 0 в каждое из двух уравнений плоскости. Если в результате подстановки оба уравнения превратятся в верные равенства A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 и A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 , то точка М 0 принадлежит каждой из плоскостей и принадлежит заданной линии. Если хотя бы одно из равенств A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 и A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 окажется неверным, то точка М 0 не принадлежит прямой линии.

Рассмотрим решение примера

Пример 2

Прямая линия задана в пространстве уравнениями двух пересекающихся плоскостей вида 2 x + 3 y + 1 = 0 x - 2 y + z - 3 = 0 . Определите, принадлежат ли точки M 0 (1 , - 1 , 0) и N 0 (0 , - 1 3 , 1) прямой линии пересечения плоскостей.

Решение

Начнем с точки М 0 . Подставим ее координаты в оба уравнения системы 2 · 1 + 3 · (- 1) + 1 = 0 1 - 2 · (- 1) + 0 - 3 = 0 ⇔ 0 = 0 0 = 0 .

В результате подстановки мы получили верные равенства. Это значит, что точка М 0 принадлежит обеим плоскостям и расположена на линии их пересечения.

Подставим в оба уравнения плоскости координаты точки N 0 (0 , - 1 3 , 1) . Получаем 2 · 0 + 3 · - 1 3 + 1 = 0 0 - 2 · - 1 3 + 1 - 3 = 0 ⇔ 0 = 0 - 1 1 3 = 0 .

Как вы видите, второе уравнение системы превратилось в неверное равенство. Это значит, что точка N 0 не принадлежит заданной прямой.

Ответ: точка М 0 принадлежит прямой линии, а точка N 0 не принадлежит.

Теперь предлагаем вам алгоритм нахождения координат некоторой точки, принадлежащей прямой линии, если прямая в пространстве в прямоугольной системе координат O x y z определяется уравнениями пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

Количество решений системы из двух линейных уравнений с темя неизвестными A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 бесконечно. Любое из этих решений может стать решением задачи.

Приведем пример.

Пример 3

Пусть в трехмерном пространстве задана прямая линия уравнениями двух пересекающихся плоскостей вида x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 . Найдите координаты любой из точек этой прямой.

Решение

Перепишем систему уравнений x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 ⇔ x + 0 y + 3 z = - 7 2 x + 3 y + 3 z = - 2 .

Возьмем отличный от нуля минор второго порядка в качестве базисного минора основной матрицы системы 1 0 2 3 = 3 ≠ 0 . Это значит, что z – это свободная неизвестная переменная.

Перенесем слагаемые, содержащие свободную неизвестную переменную z в правые части уравнений:

x + 0 y + 3 z = - 7 2 x + 3 y + 3 z = - 2 ⇔ x + 0 y = - 7 - 3 z 2 x + 3 y = - 2 - 3 z

Введем произвольное действительное число λ и примем, что z = λ .

Тогда x + 0 y = - 7 - 3 z 2 x + 3 y = - 2 - 3 z ⇔ x + 0 y = - 7 - 3 λ 2 x + 3 y = - 2 - 3 λ .

Для решения полученной системы уравнений применим метод Крамера:

∆ = 1 0 2 3 = 1 · 3 - 0 · 1 = 2 ∆ x = - 7 - 3 λ 0 - - 3 λ 3 = - 7 - 3 λ · 3 - 0 · (- 2 - 3 λ) = 21 - 9 λ ⇒ x = ∆ x ∆ = - 7 - 3 λ ∆ y = 1 - 7 - 3 λ 2 - 2 - 3 λ = 1 · - 2 - 3 λ - - 7 - 3 λ · = 12 + 3 λ ⇒ y = ∆ y ∆ = 4 + λ

Общее решение системы уравнений x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 будет иметь вид x = - 7 - 3 λ y = 4 + λ z = λ , где λ ∈ R .

Для получения частного решения системы уравнений, которое даст нам искомые координаты точки, принадлежащей заданной прямой, нам необходимо взять конкретное значение параметра λ . Если λ = 0 , то x = - 7 - 3 · 0 y = 4 + 0 z = 0 ⇔ x = - 7 y = 4 z = 0 .

Это позволяет нам получить координаты искомой точки - 7 , 4 , 0 .

Проверим верность найденных координат точки методом подстановки их в исходные уравнения двух пересекающихся плоскостей - 7 + 3 · 0 + 7 = 0 2 · (- 7) + 3 · 4 + 3 · 0 + 2 = 0 ⇔ 0 = 0 0 = 0 .

Ответ : - 7 , 4 , 0

Направляющий вектор прямой, по которой пересекаются две плоскости

Давайте рассмотрим, как определить координаты направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . В прямоугольной системе координат 0хуz направляющий вектор прямой неотделим от прямой линии.

Как мы знаем, прямая перпендикулярна по отношению к плоскости в том случае, когда она перпендикулярна по отношению к любой прямой, лежащей в данной плоскости. Исходя из вышесказанного, нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в данной плоскости. Эти два факта помогут нам в нахождении направляющего вектора прямой.

Плоскости α и β пересекаются по линии a . Направляющий вектор a → прямой линии a расположен перпендикулярно по отношению к нормальному вектору n 1 → = (A 1 , B 1 , C 1) плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и нормальному вектору n 2 → = (A 2 , B 2 , C 2) плоскости A 2 x + B 2 y + C 2 z + D 2 = 0 .

Направляющий вектор прямой a представляет собой векторное произведение векторов n → 1 = (A 1 , B 1 , C 1) и n 2 → = A 2 , B 2 , C 2 .

a → = n → 1 × n 2 → = i → j → k → A 1 B 1 C 1 A 2 B 2 C 2

Зададим множество всех направляющих векторов прямой как λ · a → = λ · n 1 → × n 2 → , где λ - это параметр, который может принимать любые действительные значения, отличные от нуля.

Пример 4

Пусть прямая в пространстве в прямоугольной системе координат O х у z задана уравнениями двух пересекающихся плоскостей x + 2 y - 3 z - 2 = 0 x - z + 4 = 0 . Найдем координаты любого направляющего вектора этой прямой.

Решение

Плоскости x + 2 y - 3 z - 2 = 0 и x - z + 4 = 0 имеют нормальные векторы n 1 → = 1 , 2 , - 3 и n 2 → = 1 , 0 , - 1 . Примем за направляющий вектор прямой линии, являющейся пересечением двух заданных плоскостей, векторное произведение нормальных векторов:

a → = n → 1 × n 2 → = i → j → k → 1 2 - 3 1 0 - 1 = i → · 2 · (- 1) + j → · (- 3) · 1 + k → · 1 · 0 - - k → · 2 · 1 - j → · 1 · (- 1) - i → · (- 3) · 0 = - 2 · i → - 2 j → - 2 k →

Запишем ответ в координатной форме a → = - 2 , - 2 , - 2 . Тем, кто не помнит, как это делается, рекомендуем обратиться к теме «Координаты вектора в прямоугольной системе координат».

Ответ: a → = - 2 , - 2 , - 2

Переход к параметрическим и каноническим уравнениям прямой в пространстве

Для решения ряда задач проще использовать параметрические уравнения прямой в пространстве вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ или канонические уравнения прямой в пространстве вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В этих уравнениях a x , a y , a z - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты некоторой точки прямой, а λ - параметр, принимающий произвольные действительные значения.

От уравнения прямой вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 можно перейти к каноническим и параметрическим уравнениям прямой линии в пространстве. Для записи канонических и параметрических уравнений прямой нам понадобятся навыки нахождения координат некоторой точки прямой, а также координат некоторого направляющего вектора прямой, заданной уравнениями двух пересекающихся плоскостей.

Рассмотрим написанное выше на примере.

Пример 5

Зададим прямую линию в трехмерной системе координат уравнениями двух пересекающихся плоскостей 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 . Напишем канонические и параметрические уравнения этой прямой.

Решение

Найдем координаты направляющего вектора прямой, который является векторным произведением нормальных векторов n 1 → = 2 , 1 , - 1 плоскости 2 x + y - z - 1 = 0 и n 2 → = (1 , 3 , - 2) плоскости x + 3 y - 2 z = 0:

a → = n 1 → × n 2 → = i → j → k → 2 1 - 1 1 3 - 2 = i → · 1 · (- 2) + j → · (- 1) · 1 + k → · 2 · 3 - - k → · 1 · 1 - j → · 2 · (- 2) - i → · (- 1) · 3 = i → + 3 · j → + 5 · k →

Координаты направляющего вектора прямой a → = (1 , 2 , 5) .

Следующим шагом является определение координат некоторой точки заданной прямой линии, которыми является одно из решений системы уравнений: 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 ⇔ 2 x + y - z = 1 x + 3 y - 2 z = 0 .

Возьмем в качестве минорной матрицы системы определитель 2 1 1 3 = 2 · 3 - 1 · 1 = 5 , который отличен от нуля. В этом случае переменная z является свободной. Перенесем слагаемые с ней в правые части каждого уравнения и придаем переменной произвольное значение λ:

2 x + y - z = 1 x + 3 y - 2 z = 0 ⇔ 2 x + y = 1 + z x + 3 y = 2 z ⇔ 2 x + y = 1 + λ x + 3 y = 2 λ , λ ∈ R

Применяем для решения полученной системы уравнений метод Крамера:

∆ = 2 1 1 3 = 2 · 3 - 1 · 1 = 5 ∆ x = 1 + λ 1 2 λ 3 = (1 + λ) · 3 - 1 · 2 λ = 3 + λ ⇒ x = ∆ x ∆ = 3 + λ 5 = 3 5 + 1 5 · λ ∆ y = 2 1 + λ 1 2 λ = 2 · 2 λ - (1 + λ) · 1 = - 1 + 3 λ ⇒ y = ∆ y ∆ = - 1 + 3 λ 5 = - 1 5 + 3 5 · λ

Получаем: 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 ⇔ x = 3 5 + 1 5 y = - 1 5 + 3 5 z = λ

Примем λ = 2 для того, чтобы получить координаты точки прямой линии: x 1 = 3 5 + 1 5 · 2 y 1 = - 1 5 + 3 5 · 2 z 1 = 2 ⇔ x 1 = 1 y 1 = 1 z 1 = 2 . Теперь мы имеем достаточно данных для того, чтобы записать канонические и параметрические уравнения данной прямой в пространстве: x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ x - 1 1 = y - 1 3 = z - 2 5 x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ ⇔ x = 1 + 1 · λ y = 1 + 3 · λ z = 2 + 5 · λ ⇔ x = 1 + λ y = 1 + 3 · λ z = 2 + 5 · λ

Ответ: x - 1 1 = y - 1 3 = z - 2 5 и x = 1 + λ y = 1 + 3 · λ z = 2 + 5 · λ

Данная задача имеет еще один способ решения.

Нахождение координат некоторой точки прямой проводится при решении системы уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

В общем случае ее решения можно записать в виде искомых параметрических уравнений прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ .

Получение канонических уравнений проводится следующим образом: решаем каждое из полученных уравнений относительно параметра λ , приравниваем правые части равенства.

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ ⇔ λ = x - x 1 a x λ = y - y 1 a y λ = z - z 1 a z ⇔ x - x 1 a x = y - y 1 a y = z - z 1 a z

Применим данный способ к решению задачи.

Пример 6

Зададим положение прямой линии уравнениями двух пересекающихся плоскостей 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 . Напишем параметрическое и каноническое уравнения для этой прямой линии.

Решение

Решение системы из двух уравнений с тремя неизвестными проводится аналогично тому, как мы делали это в предыдущем примере. Получаем: 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 ⇔ x = 3 5 + 1 5 · λ y = - 1 5 + 3 5 · λ z = λ .

Это параметрические уравнения прямой в пространстве.

Канонические уравнения получаем следующим образом: x = 3 5 + 1 5 · λ y = - 1 5 + 3 5 · λ z = λ ⇔ λ = x - 3 5 1 5 λ = y + 1 5 3 5 λ = z 1 ⇔ x - 3 5 1 5 = y + 1 5 3 5 = z 1

Полученные в обоих примерах уравнения отличаются внешне, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства, а следовательно и одну и ту же прямую линию.

Ответ: x - 3 5 1 5 = y + 1 5 3 5 = z 1 и x = 3 5 + 1 5 · λ y = - 1 5 + 3 5 · λ z = λ

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Рассмотрим решение примера.

Пример.

Найдите координаты любой точки прямой, заданной в пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Перепишем систему уравнений в следующем виде

В качестве базисного минора основной матрицы системы возьмем отличный от нуля минор второго порядка , то есть, z – свободная неизвестная переменная. Перенесем слагаемые, содержащие z , в правые части уравнений: .

Примем , где - произвольное действительное число, тогда .

Решим полученную систему уравнений :

Таким образом, общее решение системы уравнений имеет вид , где .

Если взять конкретное значение параметра , то мы получим частное решение системы уравнений, которое нам дает искомые координаты точки, лежащей на заданной прямой. Возьмем , тогда , следовательно, - искомая точка прямой.

Можно выполнить проверку найденных координат точки, подставив их в исходые уравнения двух пересекающихся плоскостей:

Ответ:

Направляющий вектор прямой, по которой пересекаются две плоскости.

В прямоугольной системе координат от прямой линии неотделим направляющий вектор прямой . Когда прямая а в прямоугольной системе координат в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей и , то координаты направляющего вектора прямой не видны. Сейчас мы покажем, как их определять.

Мы знаем, что прямая перпендикулярна к плоскости, когда она перпендикулярна любой прямой, лежащей в этой плоскости. Тогда нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в этой плоскости. Этими фактами и воспользуемся при нахождении направляющего вектора прямой.

Прямая а лежит как в плоскости , так и в плоскости . Следовательно, направляющий вектор прямой а перпендикулярен и нормальному вектору плоскости , и нормальному вектору плоскости . Таким образом, направляющим вектором прямой а является и :

Множество всех направляющих векторов прямой а мы можем задать как , где - параметр, принимающий любые действительные значения, отличные от нуля.

Пример.

Найдите координаты любого направляющего вектора прямой, которая задана в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Нормальными векторами плоскостей и являются векторы и соответственно. Направляющим вектором прямой, являющейся пересечением двух заданных плоскостей, примем векторное произведение нормальных векторов:

Ответ:

Переход к параметрическим и каноническим уравнениям прямой в пространстве.

Бывают случаи, в которых использование уравнений двух пересекающихся плоскостей для описания прямой не совсем удобно. Некоторые задачи проще решаются, если известны канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , где x 1 , y 1 , z 1 - координаты некоторой точки прямой, a x , a y , a z - координаты направляющего вектора прямой, а - параметр, принимающий произвольные действительные значения. Опишем процесс перехода от уравнений прямой вида к каноническим и параметрическим уравнениям прямой в пространстве.

В предыдущих пунктах мы научились находить координаты некоторой точки прямой, а также координаты некоторого направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей. Этих данных достаточно, чтобы записать и канонические и параметрические уравнения этой прямой в прямоугольной системе координат в пространстве.

Рассмотрим решение примера, а после этого покажем еще один способ нахождения канонических и параметрических уравнений прямой в пространстве.

Пример.

Решение.

Вычислим сначала координаты направляющего вектора прямой. Для этого найдем векторное произведение нормальных векторов и плоскостей и :

То есть, .

Теперь определим координаты некоторой точки заданной прямой. Для этого найдем одно из решений системы уравнений .

Определитель отличен от нуля, возьмем его в качестве базисного минора основной матрицы системы. Тогда переменная z является свободной, переносим слагаемые с ней в правые части уравнений, и придаем переменной z произвольное значение :

Решаем методом Крамера полученную систему уравнений:

Следовательно,

Примем , при этом получаем координаты точки прямой: .

Теперь мы можем записать требуемые канонические и параметрические уравнения исходной прямой в пространстве:

Ответ:

и

Вот второй способ решения этой задачи.

При нахождении координат некоторой точки прямой мы решаем систему уравнений . В общем случае ее решения можно записать в виде .

А это как раз искомые параметрические уравнения прямой в пространстве. Если каждое из полученных уравнений разрешить относительно параметра и после этого приравнять правые части равенств, то получим канонические уравнения прямой в пространстве

Покажем решение предыдущей задачи по этому методу.

Пример.

Прямая в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей . Напишите канонические и параметрические уравнения этой прямой.

Решение.

Решаем данную систему из двух уравнений с тремя неизвестными (решение приведено в предыдущем примере, не будем повторяться). При этом получаем . Это и есть искомые параметрические уравнения прямой в пространстве.

Осталось получить канонические уравнения прямой в пространстве:

Полученные уравнения прямой внешне отличаются от уравнений, полученных в предыдущем примере, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства (а значит, одну и ту же прямую).

Ответ:

и

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

В задаче необходимо найти линию пересечения двух плоскостей и определить натуральную величину одной из них методом плоскопараллельного перемещения.

Для решения такой классической задачи по начертательной геометрии необходимо знать следующий теоретический материал:

— нанесение проекций точек пространства на комплексный чертеж по заданным координатам;

— способы задания плоскости на комплексном чертеже, плоскости общего и частного положения;

— главные линии плоскости;

— определение точки пересечения прямой линии с плоскостью (нахождение «точки встречи» );

— метод плоскопараллельного перемещения для определения натуральной величины плоской фигуры;

— определение видимости на чертеже прямых линий и плоскостей с помощью конкурирующих точек.

Порядок решения Задачи

1. Согласно варианту Задания по координатам точек наносим на комплексный чертеж две плоскости, заданные в виде треугольников ABC (A’, B’, C’; A, B, C) и DKE (D’, K’, E’; D, K, Е) (рис.1.1 ).

Рис.1.1

2 . Для нахождения линии пересечения воспользуемся методом проецирующей плоскости . Суть его в том, что берется одна сторона (линия) первой плоскости (треугольника) и заключается в проецирующую плоскость. Определяется точка пересечения этой линии с плоскостью второго треугольника. Повторив эту задачу еще раз, но для прямой второго треугольника и плоскости первого треугольника, определим вторую точку пересечения. Так как полученные точки одновременно принадлежат обеим плоскостям, они должны находиться на линии пересечения этих плоскостей. Соединив эти точки прямой, будем иметь искомую линию пересечения плоскостей.

3. Задача решается следующим образом:

а) заключаем в проецирующую плоскость Ф(Ф’) сторону AB (A B ’) первого треугольника во фронтальной плоскости проекций V . Отмечаем точки пересечения проецирующей плоскости со сторонами DK и DE второго треугольника, получая точки 1(1’) и 2 (2’) . Переносим их по линиям связи на горизонтальную плоскость проекций H на соответствующие стороны треугольника, точка 1 (1) на стороне DE и точка 2(2) на стороне DK .

Рис.1.2

б) соединив проекции точек 1 и 2 , будем иметь проекцию проецирующей плоскости Ф . Тогда точка пересечения прямой АВ с плоскостью треугольника DKE определится (согласно правилу) вместе пересечения проекции проецирующей плоскости 1-2 и одноименной проекции прямой AB . Таким образом, получили горизонтальную проекцию первой точки пересечения плоскостей – M , по которой определяем (проецируем по линиям связи) её фронтальную проекцию – M на прямой A B (рис.1.2.а );

в) аналогичным путем находим вторую точку. Заключаем в проецирующую плоскость Г(Г) сторону второго треугольника DK (DK ) . Отмечаем точки пересечения проецирующей плоскости со сторонами первого треугольника AC и BC во горизонтальной проекции, получая проекции точек 3 и 4 . Проецируем их на соответствующие стороны в фронтальной плоскости, получаем 3’ и 4’ . Соединив их прямой, имеем проекцию проецирующей плоскости. Тогда вторая точка пересечения плоскостей будет в месте пересечения линии 3’-4’ со стороной треугольника D K , которую заключали в проецирующую плоскость. Таким образом, получили фронтальную проекцию второй точки пересечения – N , по линии связи находим горизонтальную проекцию – N (рис.1.2.б ).

г) соединив полученные точки MN (MN ) и (M N ’) на горизонтальной и фронтальной плоскостях, имеем искомую линию пересечения заданных плоскостей.

4. С помощью конкурирующих точек определяем видимость плоскостей. Возьмем пару конкурирующих точек, например, 1’=5’ во фронтальной проекции. Спроецируем их на соответствующие стороны в горизонтальную плоскость, получим 1 и 5 . Видим, что точка 1 , лежащая на стороне D Е имеет большую координату до оси x , чем точка 5 , лежащая на стороне A В . Следовательно, согласно правилу, большей координаты, точка 1 и сторона треугольника D ’Е ’ во фронтальной плоскости будут видимые. Таким образом, определяется видимость каждой стороны треугольника в горизонтальной и фронтальной плоскостях. Видимые линии на чертежах проводятся сплошной контурной линией, а не видимые — штриховой линией. Напомним, что в точках пересечения плоскостей (M N и M ’- N ) будет происходить смена видимости.

Рис.1.3

Р ис.1. 4 .

На эпюре дополнительно показано определение видимости в горизонтальной плоскости с использованием конкурирующих точек 3 и 6 на прямых DK и АВ .

5. Методом плоскопараллельного перемещения определяем натуральную величину плоскости треугольника ABC , для чего:

а) в указанной плоскости через точку С(С) проводим фронталь C F (С- F и C ’- F ’) ;

б) на свободном поле чертежа во горизонтальной проекции берем (отмечаем) произвольную точку С 1 , считая, что это одна из вершин треугольника (конкретно вершина C ). Из нее восстанавливаем перпендикуляр к фронтальной плоскости (через ось х );

Рис.1.5

в) плоскопараллельным перемещением переводим горизонтальную проекцию треугольника ABC , в новое положение A 1 B 1 C 1 таким образом, чтобы в фронтальной проекции он занял проецирующее положение (преобразовался в прямую линию). Для этого: на перпендикуляре от точки С 1 , откладываем фронтальную проекцию горизонтали C 1 F 1 (длина l CF ) получаем точку F 1 . Раствором циркуля из точки F 1 величиною F-A делаем дуговую засечку, а из точки C 1 — засечку величиной CA , тогда в пересечении дуговых линий получаем точку A 1 (вторая вершина треугольника);

— аналогично получаем точку B 1 (из точки C 1 делаем засечку величиной C B (57мм), а из точки F 1 величиной F B (90мм).Заметим, что при правильном решении три точки A 1 F ’ 1 и B ’ 1 должны лежать на одной прямой (сторона треугольника A 1 B 1 )две другие стороны С 1 A 1 и C 1 B 1 получаются путем соединения их вершин;

г) из метода вращения следует, что при перемещении или вращении точки в какой-то плоскости проекций — на сопряженной плоскости проекция этой точки должна двигаться по прямой линии, в нашем конкретном случае по прямой параллельной оси х . Тогда проводим из точек A B C фронтальной проекции эти прямые (их называют плоскостями вращения точек), а из фронтальных проекций перемещенных точек A 1 В 1 C 1 восстановим перпендикуляры (линии связи) (рис.1.6 ).

Рис.1.6

Пересечения указанных линий с соответствующими перпендикулярами дает новые положения фронтальной проекции треугольника ABC , конкретно A 1 В’ 1 C ’ 1 который должен стать проецирующим (прямой линией), поскольку горизонталь h 1 мы провели перпендикулярно фронтальной плоскости проекций (рис.1.6 );

5) тогда для получения натуральной величины треугольника достаточно его фронтальную проекцию развернуть до параллельности с горизонтальной плоскостью. Разворот осуществляем с помощью циркуля через точку А’ 1 , считая ее как центр вращения, ставим треугольник A 1 В’ 1 C ’ 1 параллельно оси х , получаем A 2 В’ 2 C ’ 2 . Как было сказано выше, при вращении точки, на сопряженной (теперь на горизонтальной) проекции они двигаются по прямым параллельным оси х . Опуская перпендикуляры (линии связи) из фронтальных проекций точек A 2 В’ 2 C ’ 2 пересечения их с соответствующими линиями находим горизонтальную проекцию треугольника ABC (A 2 В 2 C 2 ) в натуральную величину (рис.1.7 ).


Рис. 1.7

У меня есть все готовые решения задач с такими координатами, купить можно

Цена 55 руб , чертежи по начертательной геометрии из книжки Фролова Вы легко можете скачать сразу после оплаты или я вышлю Вам на почту. Они находятся в ZIP архиве в различных форматах:
*.jpg обычный цветной рисунок чертежа в масштабе 1 к 1 в хорошем разрешении 300 dpi;
*.cdw формат программы Компас 12 и выше или версии LT;
*.dwg и.dxf формат программы AUTOCAD, nanoCAD;

Раздел: Начертательная геометрия /

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и, то есть как множество точек, удовлетворяющих системе двух линейных уравнений

(V.5)

Справедливо и обратное утверждение: система двух независимых линейных уравнений вида (V.5) определяет прямую как линию пересечения плоскостей (если они не параллельны). Уравнения системы (V.5) называются общим уравнением прямой в пространстве
.

Пример V .12 . Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей

Решение . Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz .

Точка пересечения прямой с плоскостью Oyz имеет абсциссу
. Поэтому, полагая в данной системе уравнений
, получим систему с двумя переменными:

Ее решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе уравнений
, получим систему

решение которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz .

Теперь запишем уравнения прямой, проходящей через точки
и
:
или
, где
будет направляющим векто-ром этой прямой.

Пример V .13. Прямая задана каноническим уравнением
. Составить общее уравнение этой прямой.

Решение. Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:


Получили общее уравнение прямой, которая теперь задана пересечением двух плоскостей, одна из которых
параллельна осиOz (
), а другая
– осиОу (
).

Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:


Замечание . Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).

Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором .

Пусть в трехмерном пространстве задана прямая l , проходящая через точку
, и ее направляющий вектор
.

Любой вектор
, где
, лежащий на прямой, коллинеарен с вектором, поэтому их координаты пропорциональны, то есть

. (V.6)

Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости

. (V.7)

Пример V .14. Найти уравнение прямой, проходящей через две точки
,
.

,

где
,
,
.

Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая

,

где t – параметр,
.

Расстояние от точки до прямой

Рассмотри двухмерное евклидовое пространство ﻉ с декартовой системой координат. Пусть точка
ﻉ и l ﻉ. Найдем расстояние от этой точки до прямой. Положим
, и прямая l задается уравнением
(рис.V.8).

Расстояние
, вектор
, где
– нормальный вектор прямой l ,
и – коллинеарны, поэтому их координаты пропорциональны, то есть
, следовательно,
,
.

Отсюда
или умножая эти уравнения наA и B соответственно и складывая их, находим
, отсюда

.

(V.8)

определяет расстояние от точки
до прямой
.

Пример V .15. Найти уравнение прямой, проходящей через точку
перпендикулярно прямойl :
и найти расстояние от
до прямойl .

Из рис. V.8 имеем
, а нормальный вектор прямойl
. Из условия перпендикулярности имеем

Так как
, то

. (V.9)

Это и есть уравнение прямой, проходящей через точку
,перпендикулярно прямой
.

Пусть имеем уравнение прямой (V.9), проходящей через точку
, перпендикулярна прямойl :
. Найдем расстояние от точки
до прямойl , используя формулу (V.8).

Для нахождения искомого расстояния достаточно найти уравнение прямой, проходящей через две точки
и точку
, лежащую на прямой в основании перпендикуляра. Пусть
, тогда

Так как
, а вектор
, то

. (V.11)

Поскольку точка
лежит на прямойl , то имеем еще одно равенство
или

Приведем систему к виду, удобному для применения метода Крамера

Ее решение имеет вид

,

. (V.12)

Подставляя (V.12) в (V.10), получаем исходное расстояние.

Пример V .16. В двухмерном пространстве задана точка
и прямая
. Найти расстояние от точки
до прямой; записать уравнение прямой, проходящей через точку
перпендикулярно заданной прямой и найти расстояние от точки
до основания перпендикуляра к исходной прямой.

По формуле (V.8) имеем

Уравнение прямой, содержащей перпендикуляр, найдем как прямую, проходящую через две точки
и
, воспользовавшись формулой (V.11). Так как
, то, с учетом того, что
, а
, имеем

.

Для нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой

Следовательно,
,
, отсюда.

Рассмотрим трехмерное евклидовое пространство ﻉ. Пусть точка
ﻉ и плоскость ﻉ. Найдем расстояние от этой точки
до плоскости, заданной уравнением (рис.V.9).

Аналогично двухмерному пространству имеем
и вектор
, а, отсюда

. (V.13)

Уравнение прямой, содержащей перпендикуляр к плоскости , запишем как уравнение прямой, проходящей через две точки
и
, лежащую в плоскости:

. (V.14)

Для нахождения координат точки
к двум любым равенствам формулы (V.14) добавим уравнение

Решая систему трех уравнений (V.14), (V.15), найдем ,,– координаты точки
. Тогда уравнение перпендикуляра запишется в виде

.

Для нахождения расстояния от точки
до плоскости вместо формулой (V.13) воспользуемся

Поделиться: