Тема: Определение момента инерции твердых тел с помощью маятника Максвелла. Лабораторная работа15. Определение момента инерции маятника максвелла Определение момента инерции физического маятника вывод

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ № 1.2

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ФИЗИЧЕСКОГО

МАЯТНИКА

ЦЕЛЬ РАБОТЫ: определить момент инерции физического маятника и исследовать зависимость момента инерции от положения центра масс маятника относительно оси вращения.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: физический маятник на кронштейне, секундомер, призма на подставке, масштабная линейка.

ЭЛЕМЕНТЫ ТЕОРИИ

Периодические смещения тела относительно некоторого устойчивого положения (положения равновесия) называют колебательным движением или простыми колебаниями . Колебательные движения в общем случае представляют собой сложные физические процессы. Учение о колебаниях служит основой целого ряда прикладных дисциплин (акустика, теория машин, сейсмология и др.).

Простейшим видом колебаний является гармоническое колебательное движение. Гармонические колебания тела возникают при действии на него силы, пропорциональной смещению, т.е. . Эту силу называют квазиупругой или возвращающей. Природа возвращающей силы может быть различна (сила упругости, гравитации и др.) При гармоническом движении зависимость пути (смещения ) от времени выражается функцией синуса или косинуса:

где максимальное смещение тела от положения равновесия (амплитуда),

круговая или циклическая частота,

Время одного полного колебания (период),

начальная фаза колебания .

Ускорение тела, совершающего гармонические колебания, пропорционально смещению и направлено всегда в сторону равновесия, т.е. для каждого момента времени смещение и ускорение имеют противоположные знаки:

. (1)

Гармонические колебания совершают маятники под действием силы тяжести, если углы отклонения от отвесного положения (положения равновесия) малы.

Маятники бывают простые и сложные. Тело малых размеров (материальная точка), подвешенное на длинной нити, растяжением и весом которой можно пренебречь, называют простым или математическим маятником . Твердое тело произвольной формы, укрепленное на горизонтальной оси, не проходящей через центр тяжести, представляет собой сложный или физический маятник .

Всякое твердое тело можно рассматривать как совокупность неизменно соединенных материальных точек с массами , , . . ., , поэтому момент инерции физического маятника можно определить как сумму моментов инерции всех его материальных точек:

, (2)

где r – расстояние от каждой из них до оси вращения.

На практике воспользоваться формулой (2) не представляется возможным, поэтому для определения момента инерции физического маятника мы опишем его колебания с помощью закона динамики вращательного движения.

На физический маятник действуют две силы: сила тяжести, приложенная к центру тяжести маятника (точке ), и сила реакции опоры, приложенная в месте крепления маятника, где проходит ось вращения.

При отклонении физического маятника от положения равновесия на угол (рис.1) сила тяжести будет создавать вращательный момент, под действием которого начнутся колебания.

Рис. 1

Момент силы тяжести определяет угловое ускорение .

Если обозначить расстояние от оси вращения до центра тяжести через , то момент силы тяжести выразится так:

или при малых углах

, (3)

где плечо силы тяжести, масса маятника, ускорение свободного падения тела. «-» объясняется возвращающим характером момента силы. Он направлен противоположно углу отклонения маятника.

При колебаниях маятника центр его тяжести движется по дуге круга, поэтому описать его движение можно с помощью закона динамики вращательного движения. Он запишется в виде:

, (4)

где момент инерции тела относительно оси вращения .

Подставив в уравнение (4) значение (3) и решив его относительно углового ускорения, получим

, (5)

Уравнение (5) отличается от уравнения (1) только тем, что в него входят угловые величины вместо линейных.

Из сравнения уравнений (1) и (5) следует, что или , откуда получается формула для периода колебаний физического маятника:

. (6)

Из формулы периода колебаний физического маятника (5) найдем его момент инерции:

, (7)

где период колебаний маятника.

Это выражение является расчетной формулой для определения момента инерции физического маятника.

МЕТОДИКА ЭКСПЕРИМЕНТА И ОПИСАНИЕ УСТАНОВКИ

Физический маятник в данной работе состоит из стального стержня О D , на котором винтами крепится массивное тело В цилиндрической формы (рис.2). При освобождении опорных винтов, тело В можно перемещать по стержню и, следовательно, изменять положение центра тяжести маятника.

Для подвеса маятника служит специальный кронштейн, на который подвешивается маятник в точке .

Рис. 2

Рис. 3

Для нахождения центра тяжести маятника (точка ) служит специальная призма, укрепленная на устойчивой подставке (ребро стула). Маятник кладется горизонтально на ребро этой призмы и, наблюдая за балансированием, отыскивается такое положение, при котором моменты сил тяжести, действующие на правую и левую части маятника, окажутся равными (рис.3). При таком положении центр тяжести маятника будет расположен в стержне против точки опоры. Расстояние определяется при помощи масштабной линейки.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1. Определяют общую массу маятника (стержень и груз) в килограммах.
  2. Укрепив груз В на конце стержня , определяют на какой-либо опоре положение точки и измеряют расстояние r масштабной линейкой.
  3. Подвесив маятник на кронштейн, отклоняют его от положения равновесия на небольшой угол (конец стержня отводят на расстояние 6-8 см) и отпускают его. Пропустив 3-4 полных колебания, пускают в ход секундомер в тот момент, когда маятник достигает максимального отклонения. Определяют время 3050 полных колебаний маятника ().
  4. Повторяют описанную в пункте 3 операцию еще 3 раза и по полученным данным определяют среднее значение периода колебаний маятника при данном положении груза.
  5. Передвигают груз по стержню на 6-7 см и повторяют описанные операции определения и при новом положении груза B .
  6. Работа заканчивается, если таких перемещений груза с сопровождающими измерениями проделано 3-5 раз.
  7. Полученные опытные данные подставляют в формулу (7) и вычисляют в системе единиц СИ моменты инерции маятника при разных расстояниях центра тяжести от оси вращения.
  8. Запись результатов измерений и вычислений производится в таблице:

Кг

кг·м 2

Кг·м 2

Кг·м 2

Кг·м 2

Кг

кг·м 2

Кг·м 2

Кг·м 2

Кг·м 2

Кг

кг·м 2

Кг·м 2

Кг·м 2

Кг·м 2

  1. Результаты моментов инерции записываются в стандартном виде (в виде интервалов).
  2. По результатам таблицы делается вывод о зависимости момента инерции физического маятника от положения центра его тяжести.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Какие колебания называются свободными?
  2. Какие колебания называются гармоническими?
  3. Запишите уравнение свободных гармонических колебаний.
  4. Что такое частота колебаний, их период и амплитуда?
  5. Какие характеристики гармонических колебаний не изменяются с течением времени?
  6. Какие характеристики колебаний являются гармоническими функциями времени?
  7. Дайте определение моменту инерции материальной точки и моменту инерции тела.
  8. Дайте определение физическому маятнику. Как момент инерции физического маятника зависит от положения цилиндра на стержне?
  9. Дайте 2! определения моменту силы (через расстояние от центра тяжести до оси вращения и через плечо силы). Как определить направление момента силы?
  10. Запишите основной закон динамики для вращательного движения и получите формулу для периода колебаний физического маятника с сопутствующими объяснениями (используйте дополнительную литературу).

Цель работы: изучение законов динамики поступательного и вращательного движения, экспериментальное определение момента инерции маятника Максвелла.

Приборы и принадлежности: маятник Максвелла, сменные кольца, электрический миллисекундомер, миллиметровая шкала.

Методика и техника эксперимента

Маятник Максвелла представляет собой массивный диск или колесо, к концам оси которого прикреплены два шнура; за концы этих шнуров маятник подвешивают к опоре.

Если шнуры намотать на ось и затем отпустить маятник, то под действием силы тяжести шнуры будут разматываться и маятник будет опускаться с ускорением а . Опустившись в крайнее нижнее положение, при котором шнуры полностью размотаны, колесо будет по инерции вращаться в том же направлении, шнуры намотаются на ось, вследствие чего маятник поднимется.

Применим законы динамики и кинематические уравнения для описания движения маятника Максвелла. Маятник участвует в двух движениях: прямолинейном движении центра масс с ускорением а и вращательном движении вокруг оси, проходящей через центр масс, с угловым ускорением e. На маятник действуют сила тяжести m g и сила натяжения нити T .

Согласно уравнению движения центра масс, совпадающему по форме с вторым законом Ньютона, имеем:

. (1)

Вращательное движение маятник совершает под действием момента силы натяжения нити T . Момент силы тяжести, приложенной к маховику, равен нулю, т.к. линия действия этой силы проходят через ось вращения. Применим основной закон динамики вращательного движения:

где J - момент инерции маятника, e - его угловое ускорение, - момент силы Т , - радиус вала, d - диаметр вала.

Ускорение маятника связано с угловым ускорением соотношением

При равноускоренном движении

Разрешим систему уравнений (1) - (4) относительно момента инерции.

Из (3) выразим , из (1) и подставим в (2):

,

откуда момент инерции колеса определится выражением:

Учитывая, что согласно (4) , а , окончательно получим:

(5)

Установка, используемая в данной работе, состоит из вертикальной стойки, где крепятся два кронштейна: верхний 1 и нижний 2. Верхний кронштейн снабжен электромагнитом и устройством 3 для крепления бифилярного подвеса 4. Маятник представляет собой диск 5, закрепленный на оси 6, подвешенной на бифилярном подвесе.

На диск 5 крепятся сменные кольца 7. Маятник со сменными кольцами фиксируется в верхнем исходном положении с помощью электромагнита. На вертикальной стойке 8 нанесена миллиметровая шкала, имеющая пределы 0 - 420 мм. Фотодатчик 9 выдает электрические сигналы на миллисекундомер 10 с цифровой индикацией времени.



Порядок выполнения работы

1. Подготовить маятник к работе. Для этого установить с помощью устройства 3 необходимую длину бифилярного подвеса таким образом, чтобы край среза сменного кольца маятника находился на 4-5 мм ниже оптической оси фотодатчика 9.

При этом ось маятника должна занять горизонтальное положение.

2. Подключить фотодатчик к разъему ВХОД на миллисекундомере.

3. Подготовить миллисекундомер к работе:

Включить в сеть шнур питания миллисекундомера;

Нажать кнопку СЕТЬ на лицевой панели миллисекундомера, при этом должны загореться цифровые индикаторы и лампочка фотоэлектрического датчика;

Нажать кнопку СБРОС на передней панели миллисекундомера.

4. Вращая маятник, зафиксировать его в верхнем положении с помощью электромагнита. Необходимо следить за тем, чтобы нить наматывалась на ось виток к витку.

5. Нажать кнопку ПУСК на миллисекундомере. При этом электромагнит и маятник обесточиваются, маятник приходит в движение, начинается отсчет времени. В момент пересечения маятником оптической оси фотодатчика счет времени прекращается.

6. Определить время t движения маятника по миллисекундомеру.

7. По миллиметровой шкале, пользуясь указателем кронштейна 2, определить пройденное маятником расстояние h .

8. Провести пять опытов с одним и тем же кольцом, не изменяя высоту падения.

Таблица измерений

m , г d , мм Dd си . мм t , с Dt си , с h , см Dh си , см g м/с 2

9. С помощью штангенциркуля провести однократное измерение диаметра d оси.



10. Результаты измерений и погрешности измерительных приборов занести в таблицу.

11. Произвести математическую обработку результатов измерений, найти момент инерции маятника J и его погрешность DJ .

Контрольные вопросы

1. Виды движения твердого тела. Какое движение называется поступательным? вращательным?

2. Какие величины являются мерой инертности при поступательном и вращательном движении? Дайте их определение.

3. Сформулируйте теорему Штейнера.

4. Какие физические величины являются мерой воздействия при поступательном и вращательном движении?

5. Сформулируйте законы динамики поступательного и вращательного движения.

6. Ускорение при поступательном и вращательном движении. Угловое ускорение. Связь между линейными и угловыми кинематическими величинами.

7. Выведите расчетную формулу.

Законы сохранения

Лабораторная работа 3-1

РОСЖЕЛДОР

Государственное образовательное учреждение

«Ростовский государственный университет путей сообщения»

(РГУПС)

Определение момента инерции физического маятника

Методические указания к лабораторной работе по физике

Ростов-на-Дону

Ладакин, Ю. Н.

Определение момента инерции физического маятника: методические указания к лабораторной работе по физике / , ; Рост. гос. ун-т путей сообщения. – Ростов н/Д, 2007. – 10 с. : ил. – Библиогр.: 2 назв.

Содержатся краткие теоретические сведения по разделам «Колебания» и «Динамика твердого тела». Дано описание и принцип действия лабораторной установки, порядок выполнения работы и рекомендуемая литература. Сформулированы контрольные вопросы для закрепления полученных знаний.

Методические указания одобрены к изданию кафедрой «Физика» РГУПС. Предназначены для студентов всех специальностей РГУПС.

Рецензент д-р физ.-мат. наук, проф. (РГУПС)

Учебное издание

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ФИЗИЧЕСКОГО МАЯТНИКА

Методические указания к лабораторной работе по физике

Редактор

Техническое редактирование и корректура

Подписано к печати 28.12.07. Формат 60´84/16.

Бумага газетная. Ризография. Усл. печ. л. 0.58.

Уч.-изд. л. 0.53. Тираж 50 экз. Изд. № 58. Заказ №

Ростовский государственный университет путей сообщения.

Ризография РГУПС.

Адрес университета: 344038, г. Ростов н/Д, пл. Ростовского Стрелкового Полка Народного Ополчения, 2.

Ó Ростовский государственный университет путей сообщения, 2007


Приборы и принадлежности: маятник Обербека, испытываемое тело (диск), электронный секундомер, штангенциркуль, линейка, отвертка.

Цель работы: определение момента инерции физического маятника экспериментальным и расчетным способами с использованием теоремы Штейнера.

Момент инерции – это физическая величина, количественно характеризующая инерциальные свойства тела при его вращательном движении . Инерция вращения твердого тела зависит не только собственно от массы тела, но и от распределения этой массы в пространстве относительно оси вращения.

Относительно просто рассчитываются моменты инерции геометрически симметричных тел. Аналитический расчет моментов инерции тел произвольной формы представляет собой громоздкую, требующую опыта вычислений задачу.

Твердое тело произвольной формы, совершающее колебания относительно оси, проходящей через точку подвеса (рис. 1), называется физическим маятником . Требуется определить момент инерции этого маятника.

В положении равновесия центр масс https://pandia.ru/text/80/230/images/image006_43.gif" width="40" height="23">.

На маятник действуют две силы: сила тяжести https://pandia.ru/text/80/230/images/image008_41.gif" width="23" height="27"> (полагаем, что силы трения и сопротивления движению маятника отсутствуют). Отклоним маятник от вертикали на угол (угловое смещение ). Дальнейшее движение предоставленного самому себе маятника можно рассматривать как вращательное относительно оси, совпадающей с осью , перпендикулярной к плоскости рисунка.

Согласно основному закону динамики вращательного движения угловое ускорение маятника () относительно оси равно отношению результирующего момента всех сил, действующих на маятник, к его моменту инерции относительно той же оси:

. (1)

Момент силы , условно показанной на , равен нулю (как видно из рисунка – равно нулю плечо этой силы), и, следовательно, результирующий момент сил равен моменту силы тяжести относительно оси :

, (2)

где: – масса физического маятника, – ускорение свободного падения, https://pandia.ru/text/80/230/images/image003_53.gif" width="20" height="21"> и центром масс . Знак минус в формуле (2) указывает, что момент силы тяжести препятствует увеличению углового смещения .

При малых амплитудах (https://pandia.ru/text/80/230/images/image017_28.gif" width="79" height="27"> и из (1) с учетом (2) приходим к линейному дифференциальному уравнению 2-го порядка:

, где . (3)

Это означает, что малые колебания физического маятника являются гармоническими с круговой частотой и периодом (за период фаза колебаний изменяется на ):

. (4)

С помощью формулы (4) можно экспериментально определять момент инерции любого тела путем измерения величин , и :

. (5)

Физический маятник можно получить с помощью маятника Обербека . Он состоит из крестовины, выполненной из 4-х стержней и прикрепленной к втулке, вращающейся на жестко закрепленной горизонтальной оси. Если на одном из стержней закрепить тело, например диск, то полученная система будет представлять собой физический маятник (рис. 2). Ось вращения полученного маятника совпадает с центром масс маятника Обербека.


Непосредственное использование формулы (5) для расчета момента инерции данного маятника затруднительно. Это обусловлено сложностью точного нахождения как положения центра масс , так и массы всего маятника.

Преобразуем уравнение (5) к виду с легко измеряемыми параметрами. Маятник представляет собой систему из двух жестко связанных тел: ненагруженного маятника Обербека с массой и однородного диска с массой (рис. 3).

Так как относительно центра масс векторная сумма моментов масс тел системы равна нулю, получаем:

.

Отсюда расстояние между осью вращения и центром масс полученного маятника равно:

. (6)

Подставим (6) в (5) и, учитывая, что , получаем расчетную формулу для экспериментально определения момента инерции испытываемого физического маятника:

. (7)

В формулах (6) и (7) #ris3">рис. 3). Диск однородный – его центр масс совпадает с геометрическим центром. Все величины в формуле (7) теперь достаточно легко измерить.

С другой стороны, момент инерции маятника можно рассчитать, если известен (относительно оси ) момент инерции ненагруженного маятника Обербека. Действительно, в силу свойства аддитивности момента инерции имеем:

,

где – момент инерции диска радиуса , рассчитанный по теореме Гюйгенса-Штейнера относительно оси ():

.

Таким образом, формула для расчета момента инерции испытываемого нами маятника принимает вид:

. (8)

1 Диск известной массы https://pandia.ru/text/80/230/images/image033_17.gif" width="11 height=23" height="23"> между осью вращения и центром диска получить у преподавателя.

2 Отклонив маятник на малый угол , возбудить его колебания. Измерить время десяти колебаний. Измерения повторить еще 2 раза и их результаты занести в таблицу.

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ

ФИЗИЧЕСКОГО МАЯТНИКА

Цель работы : ознакомление с физическим маятником и определение его момента инерции относительно оси вращения. Изучение зависимости величины момента инерции маятника от пространственного распределения массы.

Приборы и принадлежности : физический маятник с кронштейном для его подвеса, металлическая призма для определения положения центра тяжести маятника, секундомер.

Теоретическое введение.

Физическим маятником (рис.1) называется любое твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси (О), не проходящей через центр его тяжести (С). Точка подвеса маятника является центром вращения.

Рис.1. Физический маятник

При отклонении маятника от положения равновесия на угол  возникает вращающий момент, созданный силой тяжести:

,

где l – расстояние между точкой подвеса и центром тяжести маятника (знак ми-нус обусловлен тем, что момент силы М имеет такое направление, что стремит-ся вернуть маятник к положению равновесия, т.е. уменьшить угол ).

Для малых углов отклонения
, тогда

(0)

С другой стороны момент возвращающей силы можно записать в виде:

(0)

I – момент инерции маятника

i – угловое ускорение.

Из (1) и (2) можно получить:

.

Обозначая
(0)

получим
(4)

Уравнение (4) – линейное дифференциальное уравнение 2-го порядка. Его решением является выражение
.

С учетом уравнения (3) период малых колебаний физического маятника можно записать как:

, (5)

где
- приведенная длина физического маятника

Из формулы (5) можно выразить момент инерции физического маятника относительно оси вращения

(6)

Находя путем измерений m , l и T , можно по формуле (6) вычислить момент инерции физического маятника относительно заданной оси вращения.

В данной работе используется физический маятник (рис.2), представляющий собой стальной стержень, на котором закреплены две массивные стальные чечевицы (А 1 и А 2) и опорные призмы для подвеса (П 1 и П 2). Момент инерции такого маятника будет складываться из моментов инерции стержня, чечевиц и призм:

,

где I 0 - момент инерции стержня относительно оси, проходящей через центр тяжести.

(7)

m ст – масса стержня,

l ст – длина стержня,

d – расстояние от центра тяжести стержня до точки подвеса.

Моменты инерции чечевиц и призм можно приближенно рассчитать как для точечных масс. Тогда момент инерции маятника запишется в виде:

где
- массы чечевиц А 1 и А 2 ,

- расстояния от оси вращения (точки подвеса) до чечевиц А 1 и А 2 соответственно,

- массы призм П 1 и П 1 ,

- расстояния от оси вращения до призм П 1 и П 2 соответственно.

Т.к. по условиям выполнения работы перемещается лишь одна чечевица А 1 , то изменяться будет лишь момент инерции и

(9)

Описание установки.

Применяемый в данной работе физический маятник (рис.2) представляет собой стальной стержень (С), на котором закреплены две массивные стальные чечевицы (А 1 и А 2) и опорные призмы для подвеса (П 1 и П 2). Маятник подвешивается на кронштейне.

Посредством перемещения одной из чечевиц можно изменить момент инерции маятника относительно точки подвеса (оси вращения).

Центр тяжести маятника определяется балансированием маятника на горизонтальном ребре специальной призмы (рис.3). На стержне маятника через 10 мм нанесены кольцевые нарезки, служащие для точного определения расстояния от центра тяжести до оси вращения без помощи линейки. Небольшим смещением чечевицы А 1 вдоль стержня можно добиться, чтобы расстояние l от точки подвеса до центра тяжести равнялось целому числу сантиметров, отсчитываемому по шкале на стержне.

Порядок выполнения работы.

    Определить положение центра тяжести маятника.

а) Снять маятник с кронштейна и установить его в горизонтальном положении на специальной призме П 3 (рис.3) так, чтобы он находился в равновесии. Точное положение равновесия достигается небольшим передвижением чечевицы А 1 .

Рис.3. Уравновешивание маятника

б) По шкале на маятнике измерить l - расстояние от точки подвеса (ребро призмы П 1) до центра тяжести маятника (верхнее ребро призмы П 3).

в) По шкале маятника измерить расстояние - от точки подвеса (ребро призмы П 1) до верхней чечевицы А 1 .

2. Определить период колебаний физического маятника.

а) Установить маятник призмой П 1 на кронштейн (рис.2)

б) Определить время полных 50 - 100 колебаний маятника. Записать время t и число n колебаний маятника.

в) Определить период колебаний физического маятника по формуле:

(10)

3. Снять маятник с кронштейна. Передвинуть чечевицу А 1 на несколько сантиметров в новое положение и повторить опыт. Измерения должны быть выполнены не менее, чем для трех различных положений чечевицы А 1 относительно точки подвеса.

4. По формуле (6) вычислить момент инерции физического маятника I оп .

5. Вычислить относительную погрешность момента инерции для одного из рассмотренных случаев по формуле:

. (11)

Величины T и l определяются по классу точности приборов.

6. Найти абсолютную погрешность
для каждого случая, принимая относительную погрешность одинаковой для всех случаев.

Записать в таблицу окончательный результат в виде

7. По формуле (8) вычислить момент инерции маятника I теор для каждого случая.

8. Сравнить полученные результаты I оп и I теор , вычислив отношение:

(12)

Сделать вывод о том, насколько велико расхождение полученных значений и каковы причины расхождений.

Результаты измерений и вычислений

п/п

,

, кг м 2

I теор , кг м 2

Контрольные вопросы.

    Что такое физический маятник?

    Что называется приведенной длиной физического маятника?

    Какое колебание называется гармоническим?

    Что такое период колебаний?

    Выведите формулу для вычисления периода колебаний физического маятника.

    Что такое момент инерции? В чем заключается аддитивность момента инерции?

    Получите формулу для вычисления момента инерции физического маятника.

Литература

1. Савельев И. В. Курс общей физики: Учебн. пособие для втузов: в 3 т. Т.1: Механика. Молекулярная физика. - 3-е изд., испр. - М.: Наука, 1986. – 432с.

2. Детлаф А. А. , Яворский Б. М. Курс физики: Учебн. пособие для втузов. - М.: Высшая школа, 1989. - 607 с. - предм. указ.: с. 588-603.

3. Лабораторный практикум по физике: Учеб. пособие для студентов втузов/ Б. Ф. Алексеев, К. А. Барсуков, И. А. Войцеховская и др.; Под ред. К. А. Барсукова и Ю. И. Уханова. – М.: Высш. школа,1988. – 351 с.: ил.

Физическим маятником называется твердое тело, которое может совершать колебания вокруг неподвижной горизонтальной оси под действием силы тяжести.

Изобразим сечение маятника плоскостью, перпендикулярной оси подвеса и проходящей через центр масс маятника С (рис. 324, а).

Введем обозначения: Р - вес маятника, а - расстояние ОС от центра масс до оси подвеса, - момент инерции маятника относительно оси подвеса. Положение маятника будем определять углом отклонения линии ОС от вертикали.

Для определения закона колебаний маятника воспользуемся дифференциальным уравнением вращательного движения (66). В данном случае (знак минус взят потому, что при момент отрицателен, а при - положителен) и уравнение (66) принимает вид

Деля обе части равенства на и вводя обозначение

найдем дифференциальное уравнение колебаний маятника в виде

Полученное дифференциальное уравнение в обычных функциях не интегрируется. Ограничимся рассмотрением малых колебаний маятника, считая угол малым и полагая приближенно . Тогда предыдущее уравнение примет вид

Это дифференциальное уравнение совпадает по виду с дифференциальным уравнением свободных прямолинейных колебаний точки и его общим решением по аналогии с равенством (68) из § 94 будет

Полагая, что в начальный момент маятник отклонен на малый и отпущен без начальной скорости найдем для постоянных интегрирования значения

Тогда закон малых колебаний маятника при данных начальных условиях будет

Следовательно, малые колебания физического маятника являются гармоническими. Период колебаний физического маятника, если заменить k его значением (67), определяется формулой

Как видим, для малых колебаний период от угла начального отклонения не зависит. Этот результат является приближенным. Если проинтегрировать составленное вначале дифференциальное уравнение колебаний маятника, не считая в нем угол малым (т. е. не полагая ), то можно убедиться, что зависит от Приближенно эта зависимость имеет вид

Отсюда, например, следует, что при рад (около 23°) формула (68) определяет период с точностью до

Полученные результаты охватывают и случай так называемого математического маятника, т. е. груза малых размеров (который будем рассматривать как материальную точку), подвешенного на нерастяжимой нити длиной l, массой которой по сравнению с массой груза можно пренебречь (рис. 324, б). Для математического маятника, так как он представляет собой систему, состоящую из одной материальной точки, очевидно, будет

Подставляя эти величины в равенство (68), найдем, что период малых колебаний математического маятника определяется формулой

Из сравнения формул (68) и (68), видно, что при длине

период колебаний математического маятника совпадает с периодом колебаний соответствующего физического маятника.

Длина h такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка К, отстоящая от оси подвеса на расстоянии называется центром качаний физического маятника (см. рис. 324).

Замечая, что по теореме Гюйгенса мы можем привести формулу (69) к виду

Отсюда следует, что расстояние ОК всегда больше, чем т. е. что центр качаний маятника веегда расположен ниже его центра масс.

Из формулы (69) видно, что . Поэтому, если поместить ось подвеса в точке К, то приведенная длина U полученного маятника согласно

Следовательно, точки К и О являются взаимными, т. е. если ось подвеса будет проходить через точку К, то центром качаний будет точка О (так как и период колебаний маятника не изменится. Это свойство используется в так называемом оборотном маятнике, который служит для определения ускорения силы тяжести.

Поделиться: