Действия с матрицами. Матрицы в Excel: операции (умножение, деление, сложение, вычитание, транспонирование, нахождение обратной матрицы, определителя) Сумма матриц примеры

Способ 1

Рассмотрим матрицу А размерностью 3х4 . Умножим эту матрицу на число k . При умножении матрицы на число получается матрица такой же размерности, что и исходная, при этом каждый элемент матрицы А умножается на число k .

Введем элементы матрицы в диапазон В3:Е5 , а число k — в ячейку Н4 . В диапазоне К3: N 5 вычислим матрицу В , полученную при умножении матрицы А на число k : В=А* k . Для этого введем формулу =B3*$H$4 в ячейку K 3 , где В3 — элемент а 11 матрицы А .

Примечание: адрес ячейки H 4 вводим как абсолютную ссылку, чтобы при копировании формулы ссылка не менялась.

С помощью маркера автозаполнения копируем формулу ячейки К3 В .

Таким образом, мы умножили матрицу А в Excel и получим матрицу В .

Для деления матрицы А на число k в ячейку K 3 введем формулу =B3/$H$4 В .

Способ 2

Этот способ отличается тем, что результат умножения/деления матрицы на число сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий исходную матрицу А, нажимаем на клавиатуре знак умножить (*) и выделяем ячейку с числом k Ctrl+ Shift+ Enter


Для выполнения деления в данном примере в диапазон вводим формулу =B3:E5/H4, т.е. знак «*» меняем на «/».

Сложение и вычитание матриц в Excel

Способ 1

Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В , т.е. с ij = а ij + b ij .

Рассмотрим матрицы А и В размерностью 3х4 . Вычислим сумму этих матриц. Для этого в ячейку N 3 введем формулу =B3+H3 , где B3 и H3 - первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H 3 ), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

С помощью маркера автозаполнения скопируем формулу из ячейки N 3 вниз и вправо на весь диапазон матрицы С .

Для вычитания матрицы В из матрицы А (С=А - В ) в ячейку N 3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С .

Способ 2

Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А , нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В . После ввода формулы нажимаем сочетание клавиш Ctrl+ Shift+ Enter , чтобы значениями заполнился весь диапазон.

Умножение матриц в Excel

Следует отметить, что умножать матрицы можно только в том случае, если количество столбцов первой матрицы А равно количеству строк второй матрицы В .

Рассмотрим матрицы А размерностью 3х4 и В размерностью 4х2 . При умножении этих матриц получится матрица С размерностью 3х2.

Вычислим произведение этих матриц С=А*В с помощью встроенной функции =МУМНОЖ() . Для этого выделим диапазон L 3: M 5 — в нём будут располагаться элементы матрицы С , полученной в результате умножения. На вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем Категория Математические — функция МУМНОЖ ОК .

В диалоговом окне Аргументы функции выберем диапазоны, содержащие матрицы А и В . Для этого напротив массива1 щёлкнем по красной стрелке.

А (имя диапазона появится в строке аргументов), и щелкнем по красной стрелке.

Для массива2 выполним те же действия. Щёлкнем по стрелке напротив массива2.

Выделим диапазон, содержащий элементы матрицы В , и щелкнем по красной стрелке.

В диалоговом окне рядом со строками ввода диапазонов матриц появятся элементы матриц, а внизу — элементы матрицы С . После ввода значений нажимаем на клавиатуре сочетание клавиш Shift + Ctrl ОК .

ВАЖНО. Если просто нажать ОК С .

Мы получим результат умножения матриц А и В .

Мы можем изменить значения ячеек матриц А и В , значения матрицы С поменяются автоматически.

Транспонирование матрицы в Excel

Транспонирование матрицы — операция над матрицей, при которой столбцы заменяются строками с соответствующими номерами. Обозначим транспонированную матрицу А Т .

Пусть дана матрица А размерностью 3х4 , с помощью функции =ТРАНСП() вычислим транспонированную матрицу А Т , причем размерность этой матрицы будет 4х3 .

Выделим диапазон Н3: J 6 , в который будут введены значения транспонированной матрицы.

На вкладке Формулы выберем Вставить функцию, выберем категорию Ссылки и массивы — функция ТРАНСП ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3:Е5 А Shift + Ctrl и щелкаем левой кнопкой мыши по кнопке ОК .

ВАЖНО. Если просто нажать ОК , то программа вычислит значение только первой ячейки диапазона матрицы А Т .

Нажмите для увеличения

Мы получили транспонированную матрицу.

Нахождение обратной матрицы в Excel

Матрица А -1 называется обратной для матрицы А , если А ž А -1 =А -1 ž А=Е , где Е — единичная матрица. Следует отметить, что обратную матрицу можно найти только для квадратной матрицы (одинаковое количество строк и столбцов).

Пусть дана матрица А размерностью 3х3 , найдем для неё обратную матрицу с помощью функции =МОБР() .

Для этого выделим диапазон G 3: I 5 , который будет содержать элементы обратной матрицы, на вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем категорию Математические — функция МОБР ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3: D 5 , содержащего элементы матрицы А . Нажимаем на клавиатуре сочетание клавиш Shift + Ctrl и щелкаем левой кнопкой мыши по кнопке ОК .

ВАЖНО. Если просто нажать ОК , то программа вычислит значение только первой ячейки диапазона матрицы А -1 .

Нажмите для увеличения

Мы получили обратную матрицу.

Нахождение определителя матрицы в Excel

Определитель матрицы — это число, которое является важной характеристикой квадратной матрицы.

Как найти определить матрицы в Excel

Пусть дана матрица А размерностью 3х3 , вычислим для неё определитель с помощью функции =МОПРЕД() .

Для этого выделим ячейку Н4 , в ней будет вычислен определитель матрицы, на вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем категорию Математические — функция МОПРЕД ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3: D 5 , содержащего элементы матрицы А . Нажимаем ОК .

Нажмите для увеличения

Мы вычислили определитель матрицы А .

В заключение обратим внимание на важный момент. Он касается тех операций над матрицами, для которых мы использовали встроенные в программу функции, а в результате получали новую матрицу (умножение матриц, нахождение обратной и транспонированной матриц). В матрице, которая получилась в результате операции, нельзя удалить часть элементов. Т.е. если мы выделим, например, один элемент матрицы и нажмём Del , то программа выдаст предупреждение: Нельзя изменять часть массива .

Нажмите для увеличения

Мы можем удалить только все элементы этой матрицы.

Видеоурок

— учитель физики, информатики и ИКТ, МКОУ "СОШ", с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

Сложение матриц $ A $ и $ B $ это арифметическая операция, в результате которой, должна получаться матрица $ C $, каждый элемент которой равен сумме соответствующих элементов складываемых матриц:

$$ c_{ij} = a_{ij} + b_{ij} $$

Более подробно формула сложения двух матриц выглядит так:

$$ A + B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = $$

$$ = \begin{pmatrix} a_{11} + b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{pmatrix} = C $$

Обратите внимание, что складывать и вычитать матрицы можно только одинаковой размерности. При сумме или разности будет получаться матрица $ C $ такой же размерности как и слагаемые (вычитаемые) матрицы $ A $ и $ B $. Если матрицы $ A $ и $ B $ отличаются друг от друга размерами, то сложение (вычитание) таких матриц будет ошибкой!

В формуле складываются матрицы 3 на 3, значит и получиться должна матрица 3 на 3.

Вычитание матриц полностью аналогично по алгоритму сложения, только знак минус. Каждый элемент искомой матрицы $ C $ получается благодаря вычитанию соответствующих элементов матриц $ A $ и $ B $:

$$ c_{ij} = a_{ij} - b_{ij} $$

Запишем подробную формулу вычитания двух матриц:

$$ A - B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} - \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = $$

$$ = \begin{pmatrix} a_{11} - b_{11} & a_{12}-b_{12} & a_{13}-b_{13} \\ a_{21}-b_{21} & a_{22}-b_{22} & a_{23}-b_{23} \\ a_{31}-b_{31} & a_{32}-b_{32} & a_{33}-b_{33} \end{pmatrix} = C $$

Стоит так же заметить, что нельзя складывать и вычитать матрицы с обычными числами, а так же с другими какими-то элементами

Будет полезно знать для дальнейших решений задач с матрицами знать свойства сложения (вычитания).

Свойства

  1. Если матрицы $ A,B,C $ одинаковые по размеру, тогда для них действует свойство ассоциативности: $$ A + (B + C) = (A + B) + C $$
  2. Для каждой матрицы существует нулевая матрица, обозначаемая $ O $, при сложении (вычитании) с которой исходная матрица не изменяется: $$ A \pm O = A $$
  3. Для каждой ненулевой матрицы $ A $ есть противоположная матрица $ (-A) $ сумма с которой обращается в нуль: $$ A + (-A) = 0 $$
  4. При сложении (вычитании) матриц допустимо свойство коммутативности, то есть матрицы $ A $ и $ B $ можно менять местами: $$ A + B = B + A $$ $$ A - B = B - A $$

Примеры решений

Пример 1

Даны матрицы $ A = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} $ и $ B = \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} $.

Выполнить сложение матриц, а затем вычитание.

Решение

Первым делом проверяем матрицы на размерность. У матрицы $ A $ размерность $ 2 \times 2 $, у второй матрицы $ B $ размерность тоже $ 2 \times 2 $. Это значит, что с данными матрицами можно провести совместную операцию по сложению и вычитанию.

Напомним, что для суммы нужно выполнить попарное сложение соответствующих элементов матриц $ A \text{ и } B $.

$$ A + B = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} + \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} = $$

$$ = \begin{pmatrix} 2 + 1 & 3 + (-3) \\ -1 + 2 & 4 + 5 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 1 & 9 \end{pmatrix} $$

Аналогично сумме находим разность матриц с помощью замены знака "плюс" на "минус":

$$ A - B = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} + \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} = $$

$$ = \begin{pmatrix} 2 - 1 & 3 - (-3) \\ -1 - 2 & 4 - 5 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ -3 & -1 \end{pmatrix} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ A + B = \begin{pmatrix} 3 & 0 \\ 1 & 9 \end{pmatrix}; A - B = \begin{pmatrix} 1 & 6 \\ -3 & -1 \end{pmatrix} $$

В статье: "Сложение и вычитание матриц" были даны определения, правила, замечания, свойства операций и практические примеры решения.

После изучения вводных тем о матрицах, их свойствах и действиях над ними, нам нужно получить практический опыт, решив реальные примеры на сложение и вычитание матриц. Закрепив полученные знания на практике, можно будет переходить к следующим темам.

Начнём изучение на более простых задачках, постепенно переходя на более сложные. Все действия будем комментировать и в случае необходимости давать некие сноски, которые более детально объясняют о тех или иных преобразованиях.

Определив поставленные цели данного урока, давайте перейдём к практике.

Сложение матриц на примерах:

1) Сложите две матрицы и запишите полученный результат.

Первое, что нужно сделать - это определить: имеет ли задача решение.

Размерность двух матриц совпадает, значит, решение есть.

Переходим к непосредственному сложению, складывая элементы матрицы. Конечное решение будет выглядеть так:

Как мы видим, данный пример наглядно просто демонстрирует сложение 2 матриц.
Попробуем рассмотреть задачу со сложением чуть посложнее.

2) Сложите 2 матрицы "A" и "B"

Размерность матриц совпадает, значит можно переходить к сложению.
Результатом сложения будет результат, указанный на картинке ниже:

3) Сложите матрицы "A" и "B"

Как мы делали и раньше, сначала определяем размерность. Размерность матриц "A" и "B" совпадает, можно переходить к их сложению.

Элементы матрицы складываются точно также, как и на примерах, которые решены выше.
Решение представленной задачи будет выглядеть так:

4) Сложить матрицы и записать ответ.

Для начала проверяем размерность. Мы видим, что размерность матрицы "A" равна 3×2 (3 строки и 2 столбца), а размерность матрицы "B" равна 2×3, то есть они не равны, следовательно, складывать матрицу "A" и "B" нельзя.
Ответ: нет решений.

5) Доказать справедливость равенства: A+B=B+A.
Матрицы одинаковой размерности и выглядят следующим образом:

Для начала сложим матрицу A+B, а затем B+A, после чего сравним результат.

Как мы видим, результат сложения совершенно одинаковый, т.е. от перестановки мест слагаемых значение суммы не меняется.
Это мы рассмотрели в предыдущей теме в разделе свойства действий с матрицами.

Вычитание матриц на примерах:

Вычитание матриц происходит не так просто как сложение, но отличается очень незначительно.
Для того чтобы вычесть из одной матрицы другую, они, во-первых, должны быть одинаковой размерности, а, во-вторых, вычитание производится по формуле: A-B = A+(-1) B Нужно к первой матрице прибавить вторую, которая умножена на число (-1).

Рассмотрим это более детально на примере.

6) Найти разницу матриц "C" и "D"

Размерность двух матриц совпадает, значит можно приступить к вычитанию.
Для этого из первой матрицы вычтем вторую матрицу, которая умножена на число (-1). Как мы с Вами знаем, чтобы умножить одно число на матрицу, нужно умножить каждый её элемент на данное число. Полное решение будет выглядеть так:

Как видно из данного решения, вычитание является таким же простым действием как и сложение матриц, и требует от студентов лишь арифметических знаний, поэтому эти задачи может решить абсолютно каждый студент.

На этом мы заканчиваем данный урок и надеемся, что после прочтения этого материала и подробного решения представленных задач, Вы теперь с лёгкостью можете складывать и вычитать матрицы, а данная тема для Вас является очень простой.

СЛОЖЕНИЕ МАТРИЦ.

Операция сложения вводится только для матриц одинакового размера.

ОПРЕДЕЛЕНИЕ Суммой двух матриц А = (а i j ) и В = (b i j ) одинакового размера называется матрица С = (с i j) того же размера, элементы которой равны суммам соответствующих элементов слагаемых матриц, т.е. с i j = a i j + b i j

Обозначается сумма матриц А + В.

УМНОЖЕНИЕ МАТРИЦ НА ДЕЙСТВИТЕЛЬНОЕ ЧИСЛО

ОПРЕДЕЛЕНИЕ Чтобы умножить матрицу на число k, надо умножить на это число каждый элемент матрицы:

если А= (а i j), то

СВОЙСТВА СЛОЖЕНИЯ МАТРИЦ И УМНОЖЕНИЯ НА ЧИСЛО

1. Переместительное свойство:

А + В = В + А

  • 2. Сочетательное свойство:
    • (А + В) + С = А + (В + С)
  • 3. Распределительное свойство:

k (A + B) = k A + k B,

где k - число

УМНОЖЕНИЕ МАТРИЦ

Матрицу А назовем согласованной с матрицей В, если число столбцов матрицы А равно числу строк матрицы В, т.е. для согласованных матриц матрица А имеет размер m n , матрица В имеет размер n k . Квадратные матрицы согласованы, если они одного порядка.

ОПРЕДЕЛЕНИЕ Произведением матрицы А размера m n на матрицу В размера n k называется матрица С размера m k, элемент которой а i j , расположенный в i -ой строке и j - ом столбце, равен сумме произведений элементов i - ой строки матрицы А на соответствующие элементы j - столбца матрицы В, т.е.

c i j = a i 1 b 1 j + a i 2 b 2 j +……+ a i n b n j

Обозначим: С = А В.

Произведение В А не имеет смысла, т.к. матрицы не согласованы.

ЗАМЕЧАНИЕ 1. Если А В имеет смысл, то В А может не иметь смысла.

ЗАМЕЧАНИЕ 2. Если имеет смысл А В и В А, то, вообще говоря

т.е. умножение матриц не обладает переместительным законом.

ЗАМЕЧАНИЕ 3. Если А - квадратная матрица и Е - единичная матрица того же порядка, то

А Е = Е А = А.

Отсюда следует, что единичная матрица при умножении играет роль единицы.

ПРИМЕРЫ. Найти, если можно, А В и В А.

Решение: Квадратные матрицы одного и того же второго порядка согласованы в томи другом порядке, поэтому А В и В А существуют.

Решение: Матрицы А и В согласованы

Матрицы В и А не согласованы, поэтому В А не имеет смысла.

Отметим, что в результате перемножения двух матриц получается матрица, содержащая столько строк, сколько их имеет матрица-множимое и столько столбцов, сколько их имеет матрица-множитель.

Введение

матица порядок аксиоматический умножение

Операции над матрицами, свойства операций.

В этой статье мы разберемся как проводится операция сложения над матицами одного порядка, операция умножения матрицы на число и операция умножения матриц подходящего порядка, аксиоматически зададим свойства операций, а также обсудим приоритет операций над матрицами. Параллельно с теорией будем приводить подробные решения примеров, в которых выполняются операции над матрицами.

Сразу заметим, что все нижесказанное относится к матрицам, элементами которых являются действительные (или комплексные) числа.

Операция сложения двух матриц

Определение операции сложения двух матриц.

Операция сложения определена ТОЛЬКО ДЛЯ МАТРИЦ ОДНОГО ПОРЯДКА. Другими словами, нельзя найти сумму матриц разной размерности и вообще нельзя говорить о сложении матриц разной размерности. Также нельзя говорить о сумме матрицы и числа или о сумме матрицы и какого-нибудь другого элемента.

Определение.

Сумма двух матриц и - это матрица, элементы которой равны сумме соответствующих элементов матриц А и В, то есть, .


Таким образом, результатом операции сложения двух матриц является матрица того же порядка.

Свойства операции сложения матриц.

Какими же свойствами обладает операция сложения матриц? На этот вопрос достаточно легко ответить, отталкиваясь от определения суммы двух матриц данного порядка и вспомнив свойства операции сложения действительных (или комплексных) чисел.

Для матриц А, В и С одного порядка характерно свойство ассоциативности сложения А+(В+С)=(А+В)+С.

Для матриц данного порядка существует нейтральный элемент по сложению, которым является нулевая матрица. То есть, справедливо свойство А+О=А.

Для ненулевой матрицы А данного порядка существует матрица (-А), их суммой является нулевая матрица: А+(-А)=О.

Для матриц А и В данного порядка справедливо свойство коммутативности сложения А+В=В+А.

Следовательно, множество матриц данного порядка порождает аддитивную группу Абеля (абелеву группу относительно алгебраической операции сложения).

Операция умножения матрицы на число

Определение операции умножения матрицы на число.

Операция умножения матрицы на число определена ДЛЯ МАТРИЦ ЛЮБОГО ПОРЯДКА.

Определение.

Произведение матрицы и действительного (или комплексного) числа - это матрица, элементы которой получаются умножением соответствующих элементов исходной матрицы на число, то есть, .

Таким образом, результатом умножения матрицы на число является матрица того же порядка.

Свойства операции умножения матрицы на число.

Для матриц одного порядка А и В, а также произвольного действительного (или комплексного) числа справедливо свойство дистрибутивности умножения относительно сложения.

Для произвольной матрицы А и любых действительных (или комплексных) чисел и выполняется свойство дистрибутивности.

Для произвольной матрицы А и любых действительных (или комплексных) чисел и справедливо свойство ассоциативности умножения.

Нейтральным числом по умножению на произвольную матрицу А является единица, то есть, .

Из свойств операции умножения матрицы на число следует, что умножение нулевой матрицы на число ноль даст нулевую матрицу, а произведение произвольного числа и нулевой матрицы есть нулевая матрица.

Умножение матрицы на число - примеры и их решение.

Разберемся с проведением операция умножения матрицы на число на примерах.

Найдите произведение числа 2 и матрицы.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число:


Выполните умножение матрицы на число.

Умножаем каждый элемент заданной матрицы на данное число:


Операция умножения двух матриц

Определение операции умножения двух матриц.

Операция умножения двух матриц А и В определяется только для случая, когда ЧИСЛО СТОЛБЦОВ МАТРИЦЫ А РАВНО ЧИСЛУ СТРОК МАТРИЦЫ В.

Определение. Произведение матрицы А порядка и матрицы В порядка - это такая матрица С порядка, каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицыВ, то есть,


Таким образом, результатом операции умножения матрицы порядка на матрицу порядка является матрица порядка.

Умножение матрицы на матрицу - решения примеров.

Разберемся с умножением матриц на примерах, после этого перейдем к перечислению свойств операции умножения матриц.

Найдите все элементы матрицы С, которая получается при умножении матриц и.

Порядок матрицы А равен p=3 на n=2, порядок матрицы В равен n=2 на q=4, следовательно, порядок порядок произведения этих матриц будет p=3 на q=4. Воспользуемся формулой

Последовательно принимаем значения i от 1 до 3 (так как p=3) для каждого j от 1 до 4(так как q=4), а n=2 в нашем случае, тогда


Так вычислены все элементы матрицы С, и матрица, полученная при умножении двух заданных матриц, имеет вид.

Выполните умножение матриц и.

Порядки исходных матриц позволяют провести операцию умножения. В результате мы должны получить матрицу порядка 2 на 3.


Даны матрицы и. Найдите произведение матриц А и В, а также матриц В и А.

Так как порядок матрицы А равен 3 на 1, а матрицы В равен 1 на 3, то А?В будет иметь порядок 3 на 3, а произведение матриц В и A будет иметь порядок 1 на 1.


Как видите, . Это одно из свойств операции умножения матриц.

Свойства операции умножения матриц.

Если матрицы А, В и С подходящих порядков, то справедливы следующие свойства операции умножения матриц.

Свойство ассоциативности умножения матриц.

Два свойства дистрибутивности и.

В общем случае операция умножения матриц некоммутативна.

Единичная матрица Е порядка n на n является нейтральным элементом по умножению, то есть, для произвольной матрицы А порядка p на n справедливо равенство, а для произвольной матрицы А порядка n на p - равенство.

Следует отметить, что при подходящих порядках произведение нулевой матрицы О на матрицу А дает нулевую матрицу. Произведение А на О также дает нулевую матрицу, если порядки позволяют проводить операцию умножения матриц.

Среди квадратных матриц существуют так называемые перестановочные матрицы, операция умножения для них коммутативна, то есть. Примером перестановочных матриц является пара единичной матрицы и любой другой матрицы того же порядка, так как справедливо.

Поделиться: